AF Embeddings and the Numerical Computation of Spectra in Irrational Rotation Algebras
A natural problem at the interface of operator theory and numerical analysis is that of finding a (finite dimensional) matrix whose eigenvalues approximate the spectrum of a given (infinite dimensional) operator. It is well-known that classical work of Pimsner and Voiculescu produces explicit matrix...
Gespeichert in:
Veröffentlicht in: | Numerical functional analysis and optimization 2006-09, Vol.27 (5-6), p.517-528 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A natural problem at the interface of operator theory and numerical analysis is that of finding a (finite dimensional) matrix whose eigenvalues approximate the spectrum of a given (infinite dimensional) operator. It is well-known that classical work of Pimsner and Voiculescu produces explicit matrix models for an interesting class of nontrivial examples (e.g., many discretized one-dimensional Schrödinger operators). In this paper, we observe that the spectra of their models (often) converge in the strongest possible sense-in the Hausdorff metric-and demonstrate that the rate of convergence is, in general, best possible. |
---|---|
ISSN: | 0163-0563 1532-2467 |
DOI: | 10.1080/01630560600790785 |