Influence of postcuring conditions on the processing characteristics of epoxy components

Reactive molding technologies, especially the automated pressure gelation (APG) method, are commonly used in the production of a wide range of medium and high voltage electrical equipment, including switch gears, voltage and current transformers, sensors, and bushings. In such products, not only ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in polymer technology 2006-03, Vol.25 (1), p.51-62
Hauptverfasser: Nowak, Tomasz, Sekuła, Robert, Saj, Piotr, Kasza, Krzysztof, Leskosek, Helmuth, Claus, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive molding technologies, especially the automated pressure gelation (APG) method, are commonly used in the production of a wide range of medium and high voltage electrical equipment, including switch gears, voltage and current transformers, sensors, and bushings. In such products, not only very good electrical insulation properties but also high mechanical and thermal performance are required. In order to achieve these, a suitable manufacturing process has to be established. Therefore, the use of optimal process parameters, such as mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time, as well as appropriate product design is key factors for better quality components derived from minimized shrinkage and crack avoidance. The simulation approach for analyzing the filling and curing stages of reactive molding manufacturing processes has been successfully utilized for some time, providing useful information about thermal conditions during the production. In this paper, the principles of a newly developed structural analysis are rationalized and described. A novel simulation procedure for stress and shrinkage calculations, as well as the simulation results, © 2006 Wiley Periodicals, Inc. Adv Polym Techn 25: 51–51, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20057
ISSN:0730-6679
1098-2329
DOI:10.1002/adv.20057