Pullback attractors for asymptotically compact non-autonomous dynamical systems
First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical sys...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2006-02, Vol.64 (3), p.484-498 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 3 |
container_start_page | 484 |
container_title | Nonlinear analysis |
container_volume | 64 |
creator | Caraballo, T. Łukaszewicz, G. Real, J. |
description | First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain. |
doi_str_mv | 10.1016/j.na.2005.03.111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29512252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05006139</els_id><sourcerecordid>29512252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEuVjZ8wCW8L5sykbQnxJlcoAEpt1cRwpJbGL7SLlv8dVKzEx3XC_9-7eI-SKQkWBqtt15bBiALICXlFKj8iM1nNeSkblMZkBV6yUQn2ekrMY1wBA51zNyOptOwwNmq8CUwpokg-x6HwoME7jJvnUGxyGqTB-3ORt4bwrcZu886PfxqKdHI47pIhTTHaMF-SkwyHay8M8Jx9Pj-8PL-Vy9fz6cL8sDV_MU4mWd5w31oA0ChtKRUcbwYWkSgnbKV4veNNxsEy2RrBWtbVQKFoDc2AIip-Tm73vJvjvrY1Jj300dhjQ2fyYZgtJGZMsg7AHTfAxBtvpTehHDJOmoHfN6bV2qHfNaeA6N5cl1wdvjDlaF9CZPv7pcnG1qCFzd3vO5qA_vQ06mt46Y9s-WJN06_v_j_wCKeSD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29512252</pqid></control><display><type>article</type><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</creator><creatorcontrib>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</creatorcontrib><description>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.03.111</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cocycle ; Energy method ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Navier–Stokes ; Non-autonomous (pullback) attractors ; Partial differential equations ; Pullback asymptotically compact non-autonomous dynamical systems ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Unbounded domains</subject><ispartof>Nonlinear analysis, 2006-02, Vol.64 (3), p.484-498</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</citedby><cites>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05006139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17368480$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Łukaszewicz, G.</creatorcontrib><creatorcontrib>Real, J.</creatorcontrib><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><title>Nonlinear analysis</title><description>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</description><subject>Cocycle</subject><subject>Energy method</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier–Stokes</subject><subject>Non-autonomous (pullback) attractors</subject><subject>Partial differential equations</subject><subject>Pullback asymptotically compact non-autonomous dynamical systems</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Unbounded domains</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEuVjZ8wCW8L5sykbQnxJlcoAEpt1cRwpJbGL7SLlv8dVKzEx3XC_9-7eI-SKQkWBqtt15bBiALICXlFKj8iM1nNeSkblMZkBV6yUQn2ekrMY1wBA51zNyOptOwwNmq8CUwpokg-x6HwoME7jJvnUGxyGqTB-3ORt4bwrcZu886PfxqKdHI47pIhTTHaMF-SkwyHay8M8Jx9Pj-8PL-Vy9fz6cL8sDV_MU4mWd5w31oA0ChtKRUcbwYWkSgnbKV4veNNxsEy2RrBWtbVQKFoDc2AIip-Tm73vJvjvrY1Jj300dhjQ2fyYZgtJGZMsg7AHTfAxBtvpTehHDJOmoHfN6bV2qHfNaeA6N5cl1wdvjDlaF9CZPv7pcnG1qCFzd3vO5qA_vQ06mt46Y9s-WJN06_v_j_wCKeSD9w</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Caraballo, T.</creator><creator>Łukaszewicz, G.</creator><creator>Real, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><author>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cocycle</topic><topic>Energy method</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier–Stokes</topic><topic>Non-autonomous (pullback) attractors</topic><topic>Partial differential equations</topic><topic>Pullback asymptotically compact non-autonomous dynamical systems</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Unbounded domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Łukaszewicz, G.</creatorcontrib><creatorcontrib>Real, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caraballo, T.</au><au>Łukaszewicz, G.</au><au>Real, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pullback attractors for asymptotically compact non-autonomous dynamical systems</atitle><jtitle>Nonlinear analysis</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>64</volume><issue>3</issue><spage>484</spage><epage>498</epage><pages>484-498</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.03.111</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2006-02, Vol.64 (3), p.484-498 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_29512252 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cocycle Energy method Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Navier–Stokes Non-autonomous (pullback) attractors Partial differential equations Pullback asymptotically compact non-autonomous dynamical systems Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Unbounded domains |
title | Pullback attractors for asymptotically compact non-autonomous dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pullback%20attractors%20for%20asymptotically%20compact%20non-autonomous%20dynamical%20systems&rft.jtitle=Nonlinear%20analysis&rft.au=Caraballo,%20T.&rft.date=2006-02-01&rft.volume=64&rft.issue=3&rft.spage=484&rft.epage=498&rft.pages=484-498&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.03.111&rft_dat=%3Cproquest_cross%3E29512252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29512252&rft_id=info:pmid/&rft_els_id=S0362546X05006139&rfr_iscdi=true |