Pullback attractors for asymptotically compact non-autonomous dynamical systems

First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2006-02, Vol.64 (3), p.484-498
Hauptverfasser: Caraballo, T., Łukaszewicz, G., Real, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 3
container_start_page 484
container_title Nonlinear analysis
container_volume 64
creator Caraballo, T.
Łukaszewicz, G.
Real, J.
description First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.
doi_str_mv 10.1016/j.na.2005.03.111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29512252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05006139</els_id><sourcerecordid>29512252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEuVjZ8wCW8L5sykbQnxJlcoAEpt1cRwpJbGL7SLlv8dVKzEx3XC_9-7eI-SKQkWBqtt15bBiALICXlFKj8iM1nNeSkblMZkBV6yUQn2ekrMY1wBA51zNyOptOwwNmq8CUwpokg-x6HwoME7jJvnUGxyGqTB-3ORt4bwrcZu886PfxqKdHI47pIhTTHaMF-SkwyHay8M8Jx9Pj-8PL-Vy9fz6cL8sDV_MU4mWd5w31oA0ChtKRUcbwYWkSgnbKV4veNNxsEy2RrBWtbVQKFoDc2AIip-Tm73vJvjvrY1Jj300dhjQ2fyYZgtJGZMsg7AHTfAxBtvpTehHDJOmoHfN6bV2qHfNaeA6N5cl1wdvjDlaF9CZPv7pcnG1qCFzd3vO5qA_vQ06mt46Y9s-WJN06_v_j_wCKeSD9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29512252</pqid></control><display><type>article</type><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</creator><creatorcontrib>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</creatorcontrib><description>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.03.111</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cocycle ; Energy method ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Navier–Stokes ; Non-autonomous (pullback) attractors ; Partial differential equations ; Pullback asymptotically compact non-autonomous dynamical systems ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Unbounded domains</subject><ispartof>Nonlinear analysis, 2006-02, Vol.64 (3), p.484-498</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</citedby><cites>FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05006139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17368480$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Łukaszewicz, G.</creatorcontrib><creatorcontrib>Real, J.</creatorcontrib><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><title>Nonlinear analysis</title><description>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</description><subject>Cocycle</subject><subject>Energy method</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Navier–Stokes</subject><subject>Non-autonomous (pullback) attractors</subject><subject>Partial differential equations</subject><subject>Pullback asymptotically compact non-autonomous dynamical systems</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Unbounded domains</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEuVjZ8wCW8L5sykbQnxJlcoAEpt1cRwpJbGL7SLlv8dVKzEx3XC_9-7eI-SKQkWBqtt15bBiALICXlFKj8iM1nNeSkblMZkBV6yUQn2ekrMY1wBA51zNyOptOwwNmq8CUwpokg-x6HwoME7jJvnUGxyGqTB-3ORt4bwrcZu886PfxqKdHI47pIhTTHaMF-SkwyHay8M8Jx9Pj-8PL-Vy9fz6cL8sDV_MU4mWd5w31oA0ChtKRUcbwYWkSgnbKV4veNNxsEy2RrBWtbVQKFoDc2AIip-Tm73vJvjvrY1Jj300dhjQ2fyYZgtJGZMsg7AHTfAxBtvpTehHDJOmoHfN6bV2qHfNaeA6N5cl1wdvjDlaF9CZPv7pcnG1qCFzd3vO5qA_vQ06mt46Y9s-WJN06_v_j_wCKeSD9w</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Caraballo, T.</creator><creator>Łukaszewicz, G.</creator><creator>Real, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Pullback attractors for asymptotically compact non-autonomous dynamical systems</title><author>Caraballo, T. ; Łukaszewicz, G. ; Real, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ae3f33bec05c6ab114f1b43451664ef63893bf30e25dc42d6d846a4dc0702a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cocycle</topic><topic>Energy method</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Navier–Stokes</topic><topic>Non-autonomous (pullback) attractors</topic><topic>Partial differential equations</topic><topic>Pullback asymptotically compact non-autonomous dynamical systems</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Unbounded domains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caraballo, T.</creatorcontrib><creatorcontrib>Łukaszewicz, G.</creatorcontrib><creatorcontrib>Real, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caraballo, T.</au><au>Łukaszewicz, G.</au><au>Real, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pullback attractors for asymptotically compact non-autonomous dynamical systems</atitle><jtitle>Nonlinear analysis</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>64</volume><issue>3</issue><spage>484</spage><epage>498</epage><pages>484-498</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.03.111</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2006-02, Vol.64 (3), p.484-498
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29512252
source Elsevier ScienceDirect Journals Complete
subjects Cocycle
Energy method
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Navier–Stokes
Non-autonomous (pullback) attractors
Partial differential equations
Pullback asymptotically compact non-autonomous dynamical systems
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Unbounded domains
title Pullback attractors for asymptotically compact non-autonomous dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pullback%20attractors%20for%20asymptotically%20compact%20non-autonomous%20dynamical%20systems&rft.jtitle=Nonlinear%20analysis&rft.au=Caraballo,%20T.&rft.date=2006-02-01&rft.volume=64&rft.issue=3&rft.spage=484&rft.epage=498&rft.pages=484-498&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.03.111&rft_dat=%3Cproquest_cross%3E29512252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29512252&rft_id=info:pmid/&rft_els_id=S0362546X05006139&rfr_iscdi=true