Pullback attractors for asymptotically compact non-autonomous dynamical systems

First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2006-02, Vol.64 (3), p.484-498
Hauptverfasser: Caraballo, T., Łukaszewicz, G., Real, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First, we introduce the concept of pullback asymptotically compact non-autonomous dynamical system as an extension of the similar concept in the autonomous framework. Our definition is different from that of asymptotic compactness already used in the theory of random and non-autonomous dynamical systems (as developed by Crauel, Flandoli, Kloeden, Schmalfuss, amongst others) which means the existence of a (random or time-dependent) family of compact attracting sets. Next, we prove a result ensuring the existence of a pullback attractor for a non-autonomous dynamical system under the general assumptions of pullback asymptotic compactness and the existence of a pullback absorbing family of sets. This attractor is minimal and, in most practical applications, it is unique. Finally, we illustrate the theory with a 2D Navier–Stokes model in an unbounded domain.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2005.03.111