Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles

The grafting of polymers onto the surface of zinc oxide nanoparticles and radical copolymerization of methyl methacrylate (MMA) and methacrylic acid (MAA) were investigated. The copolymer chains encapsulating nanoparticles were anchored onto the surface of nano-ZnO through reactions of carboxyl grou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2006-02, Vol.161 (3), p.209-214
Hauptverfasser: Tang, Erjun, Cheng, Guoxiang, Ma, Xiaolu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The grafting of polymers onto the surface of zinc oxide nanoparticles and radical copolymerization of methyl methacrylate (MMA) and methacrylic acid (MAA) were investigated. The copolymer chains encapsulating nanoparticles were anchored onto the surface of nano-ZnO through reactions of carboxyl groups with ZnO. Grafting percentage and grafting efficiency of composite particles were investigated by employing thermogravimetric analysis (TGA). FT-IR and 13C NMR showed that there existed a strong interaction at the interface of nano-ZnO and copolymer, which implied that the copolymer chains were grafted onto the surface of ZnO nanoparticles. Nano-ZnO being encapsulated by copolymer was confirmed by using transmission electron microscopy (TEM). Additionally, TGA plots showed that the presence of ZnO nanoparticles improved the thermal stability of copolymer to a certain extent. Another important finding is the copolymerization and grafting reaction did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns. It can also be seen from scanning electron microscope (SEM) that grafted polymer chains on nanoparticles interfere with the aggregation of ZnO nanoparticles in polymer matrix and improve their compatibility with the polymeric matrix.
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2005.10.007