Efficiencies of Sieve Tray Distillation Columns by CFD Simulation
A 3‐D two‐fluid CFD model in the Eulerian‐Eulerian framework was developed to predict the hydrodynamics and heat and mass transfer of sieve trays. Interaction between the two phases occurs via interphase momentum and heat and mass transfer. The tray geometries are based on the large rectangular tray...
Gespeichert in:
Veröffentlicht in: | Chemical engineering & technology 2006-03, Vol.29 (3), p.326-335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 3‐D two‐fluid CFD model in the Eulerian‐Eulerian framework was developed to predict the hydrodynamics and heat and mass transfer of sieve trays. Interaction between the two phases occurs via interphase momentum and heat and mass transfer. The tray geometries are based on the large rectangular tray of Dribika and Biddulph and FRI commercial‐scale sieve tray of Yanagi and Sakata. In this work a CFD simulation is developed to give predictions of the fluid flow patterns, hydraulics, and mass transfer efficiency of distillation sieve trays including a downcomer. The main objective has been to find the extent to which CFD can be used as a design and prediction tool for real behavior, concentration and temperature distributions, and efficiencies of industrial trays. Despite the use of simple correlations for closure models, the efficiencies obtained are very close to experimental data. The results show that values of point efficiency vary with position on the tray because of variation of affecting parameters, such as velocities, temperature and concentration gradients, and interfacial area. The simulation results show that CFD can be used as a powerful tool in tray design and analysis, and can be considered as a new approach for efficiency calculations and as a new tool for testing mixing models in both phases. CFD can be used as a “virtual experiment” to simulate tray behavior under operating conditions.
A 3‐D two‐fluid CFD simulation is developed to predict the fluid flow patterns, hydraulics, and mass transfer efficiency of distillation sieve trays including a downcomer. Despite the use of simple correlations for closure models, the efficiencies obtained are very close to the experimental data. CFD, a powerful tool in tray design and analysis, is a new approach for efficiency calculations and testing mixing models in both phases. |
---|---|
ISSN: | 0930-7516 1521-4125 |
DOI: | 10.1002/ceat.200500285 |