Polymer melt flow in plane channels: Hydrodynamic and thermal boundary layers
The expansion of the plastic transforming industry in the last years has prompted the development of simulation packages, some of which combining actual rheological models with simplified computational formulations, such as the Hele–Shaw approximation. This work aims to investigate in greater detail...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2006-10, Vol.179 (1), p.207-211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The expansion of the plastic transforming industry in the last years has prompted the development of simulation packages, some of which combining actual rheological models with simplified computational formulations, such as the Hele–Shaw approximation. This work aims to investigate in greater details phenomena associated with polymer melt flows, in special the development of hydrodynamic and thermal boundary layers, using more elaborate mathematical and numerical formulations. The physical equations are discretized for collocated meshes using finite differences based on second-order spatial accuracy formulae. Solutions for the commercial polymer Polyacetal POM-M90-44 are presented, which demonstrate that the hydrodynamic boundary layer grows much more rapidly than its thermal counterpart. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2006.03.087 |