Polishing mechanism of tantalum films by SiO2 particles

Dishing and erosion are major problems in conventional chemical mechanical planarization of copper/barrier layers. Understanding the polishing mechanism of the different materials involved can assist in providing a solution to these issues. Chemical mechanical polishing of tantalum was performed usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2003-10, Vol.70 (1), p.93-101
Hauptverfasser: VIJAYAKUMAR, A, DU, T, SUNDARAM, K. B, DESAI, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dishing and erosion are major problems in conventional chemical mechanical planarization of copper/barrier layers. Understanding the polishing mechanism of the different materials involved can assist in providing a solution to these issues. Chemical mechanical polishing of tantalum was performed using alumina and silica particles dispersed in deionized water at pH 6. Tantalum shows a higher removal rate in silica slurry compared to alumina slurry. To examine the polishing mechanism of tantalum in silica slurry, the surface structure of the film was investigated by X-ray photoelectron spectroscopy (XPS). Various electrochemical techniques were used to characterize the surface film formation, dissolution and the interaction between silica particles and tantalum film. XPS and electrochemical results indicate that tantalum film may react with silica particles to form Ta-O-Si bonds on the surface. The mechanical tearing of Ta-O-Si bonds leads to the removal of Ta2O5 as a lump, resulting in higher removal rates of tantalum in silica slurry.
ISSN:0167-9317
1873-5568
DOI:10.1016/S0167-9317(03)00398-8