Relation between the geometry of rail welds and the dynamic wheel - rail response: Numerical simulations for measured welds
Abstract The primary mechanisms playing a role in the dynamic wheel-rail response to rail weld irregularities in a ballasted track are pointed out. The concept of P1 and P2 forces for metallurgical rail welds, introduced in a first paper [1] concerning the present research, is further elaborated. Th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit Journal of rail and rapid transit, 2006-12, Vol.220 (4), p.409-423 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The primary mechanisms playing a role in the dynamic wheel-rail response to rail weld irregularities in a ballasted track are pointed out. The concept of P1 and P2 forces for metallurgical rail welds, introduced in a first paper [1] concerning the present research, is further elaborated. The dynamic wheel-rail response is simulated for a number of geometrical rail weld measurements. Results show a good correlation between the gradient of the rail weld geometry and the maximum dynamic wheel-rail contact forces, whereas the correlation with vertical peak deviations is shown to be very poor. Therefore, an assessment method based on the gradient (introducing a speed-dependent quality index [1]) is more consistent than a method based on vertical tolerances. An approximate formula is presented to calculate the maximum dynamic wheel-rail contact force as a function of the train velocity and the maximum gradient of the weld geometry, in analogy to Jenkins' formulae for calculating P1 and P2 forces at dipped rail joints. |
---|---|
ISSN: | 0954-4097 2041-3017 |
DOI: | 10.1243/0954409JRRT87 |