Relation between the geometry of rail welds and the dynamic wheel - rail response: Numerical simulations for measured welds

Abstract The primary mechanisms playing a role in the dynamic wheel-rail response to rail weld irregularities in a ballasted track are pointed out. The concept of P1 and P2 forces for metallurgical rail welds, introduced in a first paper [1] concerning the present research, is further elaborated. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part F, Journal of rail and rapid transit Journal of rail and rapid transit, 2006-12, Vol.220 (4), p.409-423
Hauptverfasser: Steenbergen, M J M M, Esveld, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The primary mechanisms playing a role in the dynamic wheel-rail response to rail weld irregularities in a ballasted track are pointed out. The concept of P1 and P2 forces for metallurgical rail welds, introduced in a first paper [1] concerning the present research, is further elaborated. The dynamic wheel-rail response is simulated for a number of geometrical rail weld measurements. Results show a good correlation between the gradient of the rail weld geometry and the maximum dynamic wheel-rail contact forces, whereas the correlation with vertical peak deviations is shown to be very poor. Therefore, an assessment method based on the gradient (introducing a speed-dependent quality index [1]) is more consistent than a method based on vertical tolerances. An approximate formula is presented to calculate the maximum dynamic wheel-rail contact force as a function of the train velocity and the maximum gradient of the weld geometry, in analogy to Jenkins' formulae for calculating P1 and P2 forces at dipped rail joints.
ISSN:0954-4097
2041-3017
DOI:10.1243/0954409JRRT87