Investigation of water imbibition in porous stone by thermal neutron radiography

The understanding and modelling of the process of water imbibition is important for various applications of physics (e.g. building or soil physics). To measure the spatial distribution of the water content at arbitrary times is not trivial. Neutron radiography provides an appropriate tool for such i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2006-10, Vol.39 (19), p.4284-4291
Hauptverfasser: Hassanein, R, Meyer, H O, Carminati, A, Estermann, M, Lehmann, E, Vontobel, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The understanding and modelling of the process of water imbibition is important for various applications of physics (e.g. building or soil physics). To measure the spatial distribution of the water content at arbitrary times is not trivial. Neutron radiography provides an appropriate tool for such investigations with excellent time and spatial resolution. Because of the high sensitivity to hydrogen, even small amounts of water in a porous structure can be detected in samples with dimensions up to 40 cm. Three different porous stones found in Indiana, USA, have been investigated (Mansfield sandstone, Salem limestone and Hindustan whetstone). The imbibition of deionized water and a NaCl solution in up- and downwards directions has been tracked during several hours and radiographed at regular intervals. A correction method to reduce the disturbing effects due to neutron scattering is applied. This allows a quantitative evaluation of the water content in addition to the visualization of the water distribution. The results agree well with theoretical models describing water infiltration and reproduce the water content with a pixel resolution of 272 mum in time steps of 1 min. The comparison with the radiographed structure of the dry stone explains variations in the conduction or retention of the water, respectively. The experimental and correction procedures described here can be applied to other porous media and their uptake and loss of fluids.
ISSN:0022-3727
1361-6463
DOI:10.1088/0022-3727/39/19/023