Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures

ZnO tetrapod nanostructures have been prepared by the evaporation of Zn in air (no flow), dry and humid argon flow, and dry and humid nitrogen flow. Their properties have been investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), photoluminescence (PL) and photoluminescence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2004-09, Vol.14 (9), p.856-864
Hauptverfasser: Djurišić, A. B., Choy, W. C. H., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W., Gundu Rao, T. K., Chan, W. K., Fei Lui, H., Surya, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZnO tetrapod nanostructures have been prepared by the evaporation of Zn in air (no flow), dry and humid argon flow, and dry and humid nitrogen flow. Their properties have been investigated using scanning electron microscopy (SEM), X‐ray diffraction (XRD), photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies (at different temperatures), and electron paramagnetic resonance (EPR) spectroscopy at –160 °C and room temperature. It is found that the fabrication conditions significantly influence the EPR and PL spectra obtained. While a g = 1.96 EPR signal is present in some of the samples, green PL emission can be observed from all the samples. Therefore, the green emission in our samples does not originate from the commonly assumed transition between a singly charged oxygen vacancy and a photoexcited hole [K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 1996, 68, 403]. However, the green emission can be suppressed by coating the nanostructures with a surfactant for all fabrication conditions, which indicates that this emission originates from surface defects. ZnO nanostructures have been prepared via the evaporation of zinc under different atmospheres (see Figure). No relationship has been shown to exist between the g = 1.96 electron paramagnetic resonance (EPR) spectroscopy signal and green photoluminescence; this contradicts the commonly assumed transition which occurs between a singly charged oxygen vacancy and a photoexcited hole.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.200305082