Novel application of ceramic precursors for the fabrication of composites

Preceramic polymers are enabling the development of a variety of advanced shaping methods which, in turn, make possible new and cost-effective approaches for the fabrication of composite materials. This opens new perspectives for the mass production of composites which might, for example, be used in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2005, Vol.25 (2), p.187-192
Hauptverfasser: Herzog, Andreas, Thünemann, Maik, Vogt, Ulrich, Beffort, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preceramic polymers are enabling the development of a variety of advanced shaping methods which, in turn, make possible new and cost-effective approaches for the fabrication of composite materials. This opens new perspectives for the mass production of composites which might, for example, be used in cost-sensitive areas of application in the machine and automobile industries. In two examples it will be shown how preceramic polymers can be used to obtain both metal matrix composites (MMC) and ceramic matrix composites (CMC). Their properties will be discussed in particular with respect to the usage of a preceramic polymer. The first example shows an approach to manufacturing short-fibre-reinforced CMCs by means of a plastic forming technique which involves mixing of either carbon or SiC fibres, ceramic fillers and a viscous ceramic precursor. The precursor permits a fibre-reinforced ceramic with a low porosity to be obtained. The role of the precursor in the whole process and the resulting material properties will be discussed. The second example shows a method for fabricating porous SiC ceramic preforms which are subsequently infiltrated with aluminium to form a MMC. By using the precursor route, a machinable preform with tailored porosity can be produced. Correlations between precursor, preform and MMC properties will be drawn.
ISSN:0955-2219
1873-619X
DOI:10.1016/j.jeurceramsoc.2004.07.015