On the elliptic problems with critical weighted Sobolev–Hardy exponents

Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-03, Vol.66 (5), p.1037-1050
1. Verfasser: Kang, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050
container_issue 5
container_start_page 1037
container_title Nonlinear analysis
container_volume 66
creator Kang, Dongsheng
description Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters a , b , λ and μ .
doi_str_mv 10.1016/j.na.2006.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29453171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X0600023X</els_id><sourcerecordid>29453171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</originalsourceid><addsrcrecordid>eNp1kM1O5DAQhK0VK-3wc-eYC9wS2nEcJ9wQ4k8aaQ6w0t4su9NmPMokgx0YuPEO-4b7JGs0SJw4tdT6qrq6GDvmUHDg9dmqGExRAtQF8AJA_GAz3iiRy5LLPTYDUZe5rOo_v9h-jCsA4ErUM3a3GLJpSRn1vd9MHrNNGG1P65ht_bTMMPi0NH22Jf-4nKjL7kc79vTy7_3vrQndW0avm3GgYYqH7KczfaSjz3nAfl9fPVze5vPFzd3lxTxHIeWUu1YpY63D1jorOaC0qkXZWlnxpgJAcs4JspVoSgXW8Y6DRGq4wlYgoDhgpzvflPTpmeKk1z5iym8GGp-jLttKCq54AmEHYhhjDOT0Jvi1CW-ag_7oTK_0YPRHZxq4Tp0lycmnt4npaxfMgD5-6ZpKKKiaxJ3vOEqPvngKOqKnAanzgXDS3ei_P_If_XeCYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29453171</pqid></control><display><type>article</type><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Dongsheng</creator><creatorcontrib>Kang, Dongsheng</creatorcontrib><description>Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters a , b , λ and μ .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.01.003</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Caffarelli–Kohn–Nirenberg inequality ; Elliptic equation ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Nontrivial solution ; Partial differential equations ; Sciences and techniques of general use ; Variational method</subject><ispartof>Nonlinear analysis, 2007-03, Vol.66 (5), p.1037-1050</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</citedby><cites>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2006.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18437048$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Dongsheng</creatorcontrib><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><title>Nonlinear analysis</title><description>Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters a , b , λ and μ .</description><subject>Caffarelli–Kohn–Nirenberg inequality</subject><subject>Elliptic equation</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nontrivial solution</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Variational method</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O5DAQhK0VK-3wc-eYC9wS2nEcJ9wQ4k8aaQ6w0t4su9NmPMokgx0YuPEO-4b7JGs0SJw4tdT6qrq6GDvmUHDg9dmqGExRAtQF8AJA_GAz3iiRy5LLPTYDUZe5rOo_v9h-jCsA4ErUM3a3GLJpSRn1vd9MHrNNGG1P65ht_bTMMPi0NH22Jf-4nKjL7kc79vTy7_3vrQndW0avm3GgYYqH7KczfaSjz3nAfl9fPVze5vPFzd3lxTxHIeWUu1YpY63D1jorOaC0qkXZWlnxpgJAcs4JspVoSgXW8Y6DRGq4wlYgoDhgpzvflPTpmeKk1z5iym8GGp-jLttKCq54AmEHYhhjDOT0Jvi1CW-ag_7oTK_0YPRHZxq4Tp0lycmnt4npaxfMgD5-6ZpKKKiaxJ3vOEqPvngKOqKnAanzgXDS3ei_P_If_XeCYg</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Kang, Dongsheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070301</creationdate><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><author>Kang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Caffarelli–Kohn–Nirenberg inequality</topic><topic>Elliptic equation</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nontrivial solution</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the elliptic problems with critical weighted Sobolev–Hardy exponents</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>66</volume><issue>5</issue><spage>1037</spage><epage>1050</epage><pages>1037-1050</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters a , b , λ and μ .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.01.003</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2007-03, Vol.66 (5), p.1037-1050
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29453171
source Elsevier ScienceDirect Journals
subjects Caffarelli–Kohn–Nirenberg inequality
Elliptic equation
Exact sciences and technology
Mathematical analysis
Mathematics
Nontrivial solution
Partial differential equations
Sciences and techniques of general use
Variational method
title On the elliptic problems with critical weighted Sobolev–Hardy exponents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20elliptic%20problems%20with%20critical%20weighted%20Sobolev%E2%80%93Hardy%20exponents&rft.jtitle=Nonlinear%20analysis&rft.au=Kang,%20Dongsheng&rft.date=2007-03-01&rft.volume=66&rft.issue=5&rft.spage=1037&rft.epage=1050&rft.pages=1037-1050&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.01.003&rft_dat=%3Cproquest_cross%3E29453171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29453171&rft_id=info:pmid/&rft_els_id=S0362546X0600023X&rfr_iscdi=true