On the elliptic problems with critical weighted Sobolev–Hardy exponents
Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition,...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2007-03, Vol.66 (5), p.1037-1050 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 5 |
container_start_page | 1037 |
container_title | Nonlinear analysis |
container_volume | 66 |
creator | Kang, Dongsheng |
description | Let
Ω
⊂
R
N
be a smooth bounded domain such that
0
∈
Ω
,
N
≥
3
. In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation
−
div
(
|
x
|
−
2
a
∇
u
)
−
μ
u
|
x
|
2
(
1
+
a
)
=
|
u
|
p
−
2
|
x
|
b
p
u
+
λ
u
with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters
a
,
b
,
λ
and
μ
. |
doi_str_mv | 10.1016/j.na.2006.01.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29453171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X0600023X</els_id><sourcerecordid>29453171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</originalsourceid><addsrcrecordid>eNp1kM1O5DAQhK0VK-3wc-eYC9wS2nEcJ9wQ4k8aaQ6w0t4su9NmPMokgx0YuPEO-4b7JGs0SJw4tdT6qrq6GDvmUHDg9dmqGExRAtQF8AJA_GAz3iiRy5LLPTYDUZe5rOo_v9h-jCsA4ErUM3a3GLJpSRn1vd9MHrNNGG1P65ht_bTMMPi0NH22Jf-4nKjL7kc79vTy7_3vrQndW0avm3GgYYqH7KczfaSjz3nAfl9fPVze5vPFzd3lxTxHIeWUu1YpY63D1jorOaC0qkXZWlnxpgJAcs4JspVoSgXW8Y6DRGq4wlYgoDhgpzvflPTpmeKk1z5iym8GGp-jLttKCq54AmEHYhhjDOT0Jvi1CW-ag_7oTK_0YPRHZxq4Tp0lycmnt4npaxfMgD5-6ZpKKKiaxJ3vOEqPvngKOqKnAanzgXDS3ei_P_If_XeCYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29453171</pqid></control><display><type>article</type><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><source>Elsevier ScienceDirect Journals</source><creator>Kang, Dongsheng</creator><creatorcontrib>Kang, Dongsheng</creatorcontrib><description>Let
Ω
⊂
R
N
be a smooth bounded domain such that
0
∈
Ω
,
N
≥
3
. In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation
−
div
(
|
x
|
−
2
a
∇
u
)
−
μ
u
|
x
|
2
(
1
+
a
)
=
|
u
|
p
−
2
|
x
|
b
p
u
+
λ
u
with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters
a
,
b
,
λ
and
μ
.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2006.01.003</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Caffarelli–Kohn–Nirenberg inequality ; Elliptic equation ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Nontrivial solution ; Partial differential equations ; Sciences and techniques of general use ; Variational method</subject><ispartof>Nonlinear analysis, 2007-03, Vol.66 (5), p.1037-1050</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</citedby><cites>FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2006.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18437048$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Dongsheng</creatorcontrib><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><title>Nonlinear analysis</title><description>Let
Ω
⊂
R
N
be a smooth bounded domain such that
0
∈
Ω
,
N
≥
3
. In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation
−
div
(
|
x
|
−
2
a
∇
u
)
−
μ
u
|
x
|
2
(
1
+
a
)
=
|
u
|
p
−
2
|
x
|
b
p
u
+
λ
u
with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters
a
,
b
,
λ
and
μ
.</description><subject>Caffarelli–Kohn–Nirenberg inequality</subject><subject>Elliptic equation</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nontrivial solution</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Variational method</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1O5DAQhK0VK-3wc-eYC9wS2nEcJ9wQ4k8aaQ6w0t4su9NmPMokgx0YuPEO-4b7JGs0SJw4tdT6qrq6GDvmUHDg9dmqGExRAtQF8AJA_GAz3iiRy5LLPTYDUZe5rOo_v9h-jCsA4ErUM3a3GLJpSRn1vd9MHrNNGG1P65ht_bTMMPi0NH22Jf-4nKjL7kc79vTy7_3vrQndW0avm3GgYYqH7KczfaSjz3nAfl9fPVze5vPFzd3lxTxHIeWUu1YpY63D1jorOaC0qkXZWlnxpgJAcs4JspVoSgXW8Y6DRGq4wlYgoDhgpzvflPTpmeKk1z5iym8GGp-jLttKCq54AmEHYhhjDOT0Jvi1CW-ag_7oTK_0YPRHZxq4Tp0lycmnt4npaxfMgD5-6ZpKKKiaxJ3vOEqPvngKOqKnAanzgXDS3ei_P_If_XeCYg</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Kang, Dongsheng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070301</creationdate><title>On the elliptic problems with critical weighted Sobolev–Hardy exponents</title><author>Kang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f977abbfc9bfb510c5b79c59b5418400cefff3eb438270bf1d105ce817c93c0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Caffarelli–Kohn–Nirenberg inequality</topic><topic>Elliptic equation</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nontrivial solution</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Variational method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the elliptic problems with critical weighted Sobolev–Hardy exponents</atitle><jtitle>Nonlinear analysis</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>66</volume><issue>5</issue><spage>1037</spage><epage>1050</epage><pages>1037-1050</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let
Ω
⊂
R
N
be a smooth bounded domain such that
0
∈
Ω
,
N
≥
3
. In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation
−
div
(
|
x
|
−
2
a
∇
u
)
−
μ
u
|
x
|
2
(
1
+
a
)
=
|
u
|
p
−
2
|
x
|
b
p
u
+
λ
u
with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters
a
,
b
,
λ
and
μ
.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2006.01.003</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2007-03, Vol.66 (5), p.1037-1050 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_29453171 |
source | Elsevier ScienceDirect Journals |
subjects | Caffarelli–Kohn–Nirenberg inequality Elliptic equation Exact sciences and technology Mathematical analysis Mathematics Nontrivial solution Partial differential equations Sciences and techniques of general use Variational method |
title | On the elliptic problems with critical weighted Sobolev–Hardy exponents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20elliptic%20problems%20with%20critical%20weighted%20Sobolev%E2%80%93Hardy%20exponents&rft.jtitle=Nonlinear%20analysis&rft.au=Kang,%20Dongsheng&rft.date=2007-03-01&rft.volume=66&rft.issue=5&rft.spage=1037&rft.epage=1050&rft.pages=1037-1050&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2006.01.003&rft_dat=%3Cproquest_cross%3E29453171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29453171&rft_id=info:pmid/&rft_els_id=S0362546X0600023X&rfr_iscdi=true |