On the elliptic problems with critical weighted Sobolev–Hardy exponents

Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2007-03, Vol.66 (5), p.1037-1050
1. Verfasser: Kang, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω ⊂ R N be a smooth bounded domain such that 0 ∈ Ω , N ≥ 3 . In this paper, we deal with the conditions that ensure the existence of nontrivial solutions for the elliptic equation − div ( | x | − 2 a ∇ u ) − μ u | x | 2 ( 1 + a ) = | u | p − 2 | x | b p u + λ u with Dirichlet boundary condition, which involving the Caffarelli–Kohn–Nirenberg inequalities. The results depend crucially on the parameters a , b , λ and μ .
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2006.01.003