Nonoscillatory half-linear differential equations and generalized Karamata functions

We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2006-02, Vol.64 (4), p.762-787
Hauptverfasser: Jaroš, Jaroslav, Takaŝi, Kusano, Tanigawa, Tomoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 4
container_start_page 762
container_title Nonlinear analysis
container_volume 64
creator Jaroš, Jaroslav
Takaŝi, Kusano
Tanigawa, Tomoyuki
description We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type (A) ( p ( t ) | y ′ | α - 1 y ′ ) ′ + q ( t ) | y | α - 1 y = 0 .
doi_str_mv 10.1016/j.na.2005.05.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29453046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05006346</els_id><sourcerecordid>29453046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-1adda902e20ad271fc0ff57b0f81cdb709568b72855bcb68ba52f24555aadff63</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM2aBLeHsxEnLhiq-RAVLkdisi30GV6nT2ilS-etJKBIT0kl3w--903uMnXPIOPDyapl5zASAzIYp5AEb8UmVp1JwechGkJcilUX5dsxOYlwCAK_ycsQWz61vo3ZNg10bdskHNjZtnCcMiXHWUiDfOWwS2myxc62PCXqTvJOngI37IpM8YcAVdpjYrdc_yCk7sthEOvvdY_Z6d7uYPaTzl_vH2c081YXgXcrRGJyCIAFoRMWtBmtlVYOdcG3qCqaynNSVmEhZ67o_UQorCiklorG2zMfscu-7Du1mS7FTKxc19Vk8tduoxLSQORQDCHtQhzbGQFatg1th2CkOaqhPLZVHNdSnhullY3bx641R96UE9NrFP11VQCEg77nrPUd90E9HQfVtktdkXCDdKdO6_598A036hjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29453046</pqid></control><display><type>article</type><title>Nonoscillatory half-linear differential equations and generalized Karamata functions</title><source>Elsevier ScienceDirect Journals</source><creator>Jaroš, Jaroslav ; Takaŝi, Kusano ; Tanigawa, Tomoyuki</creator><creatorcontrib>Jaroš, Jaroslav ; Takaŝi, Kusano ; Tanigawa, Tomoyuki</creatorcontrib><description>We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type (A) ( p ( t ) | y ′ | α - 1 y ′ ) ′ + q ( t ) | y | α - 1 y = 0 .</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.05.045</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Half-linear differential equation ; Mathematical analysis ; Mathematics ; Nonoscillation ; Ordinary differential equations ; Regular variation ; Sciences and techniques of general use ; Slowly varying function</subject><ispartof>Nonlinear analysis, 2006-02, Vol.64 (4), p.762-787</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-1adda902e20ad271fc0ff57b0f81cdb709568b72855bcb68ba52f24555aadff63</citedby><cites>FETCH-LOGICAL-c421t-1adda902e20ad271fc0ff57b0f81cdb709568b72855bcb68ba52f24555aadff63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05006346$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17404203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaroš, Jaroslav</creatorcontrib><creatorcontrib>Takaŝi, Kusano</creatorcontrib><creatorcontrib>Tanigawa, Tomoyuki</creatorcontrib><title>Nonoscillatory half-linear differential equations and generalized Karamata functions</title><title>Nonlinear analysis</title><description>We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type (A) ( p ( t ) | y ′ | α - 1 y ′ ) ′ + q ( t ) | y | α - 1 y = 0 .</description><subject>Exact sciences and technology</subject><subject>Half-linear differential equation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonoscillation</subject><subject>Ordinary differential equations</subject><subject>Regular variation</subject><subject>Sciences and techniques of general use</subject><subject>Slowly varying function</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM2aBLeHsxEnLhiq-RAVLkdisi30GV6nT2ilS-etJKBIT0kl3w--903uMnXPIOPDyapl5zASAzIYp5AEb8UmVp1JwechGkJcilUX5dsxOYlwCAK_ycsQWz61vo3ZNg10bdskHNjZtnCcMiXHWUiDfOWwS2myxc62PCXqTvJOngI37IpM8YcAVdpjYrdc_yCk7sthEOvvdY_Z6d7uYPaTzl_vH2c081YXgXcrRGJyCIAFoRMWtBmtlVYOdcG3qCqaynNSVmEhZ67o_UQorCiklorG2zMfscu-7Du1mS7FTKxc19Vk8tduoxLSQORQDCHtQhzbGQFatg1th2CkOaqhPLZVHNdSnhullY3bx641R96UE9NrFP11VQCEg77nrPUd90E9HQfVtktdkXCDdKdO6_598A036hjE</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Jaroš, Jaroslav</creator><creator>Takaŝi, Kusano</creator><creator>Tanigawa, Tomoyuki</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Nonoscillatory half-linear differential equations and generalized Karamata functions</title><author>Jaroš, Jaroslav ; Takaŝi, Kusano ; Tanigawa, Tomoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-1adda902e20ad271fc0ff57b0f81cdb709568b72855bcb68ba52f24555aadff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Exact sciences and technology</topic><topic>Half-linear differential equation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonoscillation</topic><topic>Ordinary differential equations</topic><topic>Regular variation</topic><topic>Sciences and techniques of general use</topic><topic>Slowly varying function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaroš, Jaroslav</creatorcontrib><creatorcontrib>Takaŝi, Kusano</creatorcontrib><creatorcontrib>Tanigawa, Tomoyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaroš, Jaroslav</au><au>Takaŝi, Kusano</au><au>Tanigawa, Tomoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonoscillatory half-linear differential equations and generalized Karamata functions</atitle><jtitle>Nonlinear analysis</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>64</volume><issue>4</issue><spage>762</spage><epage>787</epage><pages>762-787</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type (A) ( p ( t ) | y ′ | α - 1 y ′ ) ′ + q ( t ) | y | α - 1 y = 0 .</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.05.045</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2006-02, Vol.64 (4), p.762-787
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_29453046
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Half-linear differential equation
Mathematical analysis
Mathematics
Nonoscillation
Ordinary differential equations
Regular variation
Sciences and techniques of general use
Slowly varying function
title Nonoscillatory half-linear differential equations and generalized Karamata functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonoscillatory%20half-linear%20differential%20equations%20and%20generalized%20Karamata%20functions&rft.jtitle=Nonlinear%20analysis&rft.au=Jaro%C5%A1,%20Jaroslav&rft.date=2006-02-01&rft.volume=64&rft.issue=4&rft.spage=762&rft.epage=787&rft.pages=762-787&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2005.05.045&rft_dat=%3Cproquest_cross%3E29453046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29453046&rft_id=info:pmid/&rft_els_id=S0362546X05006346&rfr_iscdi=true