Nonoscillatory half-linear differential equations and generalized Karamata functions
We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equa...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2006-02, Vol.64 (4), p.762-787 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type
(A)
(
p
(
t
)
|
y
′
|
α
-
1
y
′
)
′
+
q
(
t
)
|
y
|
α
-
1
y
=
0
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2005.05.045 |