An equivalent stiffness approach for modelling the behaviour of compression members according to Eurocode 3

The development of design procedures based on inelastic advanced analysis is a key consideration for future steel design codes. In advanced analysis the effect of imperfections has to be modelled in such a way that the incremental analysis fully captures this effect in the process of moment redistri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of constructional steel research 2007, Vol.63 (1), p.55-70
Hauptverfasser: Barszcz, A.M., Gizejowski, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of design procedures based on inelastic advanced analysis is a key consideration for future steel design codes. In advanced analysis the effect of imperfections has to be modelled in such a way that the incremental analysis fully captures this effect in the process of moment redistribution. In modelling the influence of imperfections on the behaviour of individual members of real structures, different approaches have been used to globally represent this effect in the overall analysis of structural systems. They are referred to as the initial bow imperfection approach or as the equivalent transverse load approach. When using the abovementioned approaches in analysis of multiple member structural systems, the designer is required to arrange the directions of bow imperfections or equivalent transverse loads in such a way that the imperfection arrangement leads to the least constrained solution, i.e. the lowest ultimate load predicted from all possible sets of member initial imperfection arrangements. Since there is still ongoing research on the development of simple application rules ensuring that the designer obtains a unique solution when choosing a certain set of member initial imperfections, there is at the same time interest in the development of alternative approaches to modelling the influence of member imperfections on the behaviour of structural systems. This paper provides the necessary background information as well as describes the formulation and modelling techniques used in the development of a new approach to modelling the influence of imperfections on the stability behaviour of structural components and systems. This new approach, called hereafter an equivalent stiffness approach, has an advantage over the previously described approaches since an imperfect member is treated as a hypothetically straight element, flexural and axial stiffnesses of which at each load level are predicted in a continuous fashion dependent upon the actual force and deformation states. This type of modelling does not require any explicit modelling of equivalent geometric imperfections or equivalent forces and their directions in advanced analysis; therefore also it does not require any buckling mode assessment. Moreover, the effects of strain hardening and section class may conveniently be included in modelling. Finally, European buckling curves are used to estimate the values of parameters of the developed model that can be immediately used in advance
ISSN:0143-974X
1873-5983
DOI:10.1016/j.jcsr.2006.03.003