Investigation of mid-infrared type-II W diode lasers

We report an experimental investigation of 16 different mid-infrared diode laser samples with type-II "W" active regions. A number of design modifications were employed to study effects on the I-V characteristics, lasing threshold, and wallplug efficiency. Contrary to expectations, the thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2006-03, Vol.35 (3), p.453-461
Hauptverfasser: CANEDY, C. L, BEWLEY, W. W, LINDLE, J. R, KIM, C. S, KIM, M, VURGAFTMAN, I, MEYER, J. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 3
container_start_page 453
container_title Journal of electronic materials
container_volume 35
creator CANEDY, C. L
BEWLEY, W. W
LINDLE, J. R
KIM, C. S
KIM, M
VURGAFTMAN, I
MEYER, J. R
description We report an experimental investigation of 16 different mid-infrared diode laser samples with type-II "W" active regions. A number of design modifications were employed to study effects on the I-V characteristics, lasing threshold, and wallplug efficiency. Contrary to expectations, the threshold current density at low temperatures did not vary significantly with the number of active quantum-well periods, nor was there any clear correlation between lasing threshold and photoluminescence intensity. A shorter-wavelength device (3.2-3.6 µm) produced >500 mW of cw power at 80 K, and a second device displayed a wallplug efficiency >10%. The maximum lasing temperature was 317 K for pulsed operation and 218 K for cw operation. At T = 100 K, cavity-length studies indicated an internal loss of 7 cm^sup -1^ and nominal internal efficiency of 96%. Hakki-Paoli measurements of the gain spectrum implied an intrinsic linewidth enhancement factor of ~1.3, which slightly exceeds the theoretical prediction. Longer-wavelength devices (λ [asymptotically =] 3.8-4.5 µm) showed similarly low threshold current densities at T = 80 K but degraded more rapidly with increasing temperature. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02690532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29441917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1014633791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cfa1d6899dd06874e450a273f6a7b325f0ca5019bf82e7bae229c75cf53937103</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMoWKsbf8Eg6EIYfS8fk8lSi9WBghtFd0OaSSRlOjMmU6H_3kgLBVdvc97l3kPIJcIdAsj7xznQQoFg9IhMUHCWY1l8HpMJsAJzQZk4JWcxrgBQYIkTwqvux8bRf-nR913Wu2ztm9x3Luhgm2zcDjavquwja3zf2KzV0YZ4Tk6cbqO92N8peZ8_vc1e8sXrczV7WOSGoRpz4zQ2RalU00BRSm65AE0lc4WWS0aFA6MFoFq6klq51JZSZaQwTjDFJAKbkptd7hD6702qWa99NLZtdWf7Tayp4hwVygRe_QNX_SZ0qVtNgZc8DccE3e4gE_oYg3X1EPxah22NUP_Zqw_2Eny9T9TR6Dbp6IyPhw9ZAFKQ7BfPUGvL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204845231</pqid></control><display><type>article</type><title>Investigation of mid-infrared type-II W diode lasers</title><source>SpringerLink Journals - AutoHoldings</source><creator>CANEDY, C. L ; BEWLEY, W. W ; LINDLE, J. R ; KIM, C. S ; KIM, M ; VURGAFTMAN, I ; MEYER, J. R</creator><creatorcontrib>CANEDY, C. L ; BEWLEY, W. W ; LINDLE, J. R ; KIM, C. S ; KIM, M ; VURGAFTMAN, I ; MEYER, J. R</creatorcontrib><description>We report an experimental investigation of 16 different mid-infrared diode laser samples with type-II "W" active regions. A number of design modifications were employed to study effects on the I-V characteristics, lasing threshold, and wallplug efficiency. Contrary to expectations, the threshold current density at low temperatures did not vary significantly with the number of active quantum-well periods, nor was there any clear correlation between lasing threshold and photoluminescence intensity. A shorter-wavelength device (3.2-3.6 µm) produced &gt;500 mW of cw power at 80 K, and a second device displayed a wallplug efficiency &gt;10%. The maximum lasing temperature was 317 K for pulsed operation and 218 K for cw operation. At T = 100 K, cavity-length studies indicated an internal loss of 7 cm^sup -1^ and nominal internal efficiency of 96%. Hakki-Paoli measurements of the gain spectrum implied an intrinsic linewidth enhancement factor of ~1.3, which slightly exceeds the theoretical prediction. Longer-wavelength devices (λ [asymptotically =] 3.8-4.5 µm) showed similarly low threshold current densities at T = 80 K but degraded more rapidly with increasing temperature. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/BF02690532</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Effects ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Infrared radiation ; Lasers ; Materials science ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optics ; Physics ; Semiconductor lasers; laser diodes</subject><ispartof>Journal of electronic materials, 2006-03, Vol.35 (3), p.453-461</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Mar 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cfa1d6899dd06874e450a273f6a7b325f0ca5019bf82e7bae229c75cf53937103</citedby><cites>FETCH-LOGICAL-c319t-cfa1d6899dd06874e450a273f6a7b325f0ca5019bf82e7bae229c75cf53937103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17601207$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CANEDY, C. L</creatorcontrib><creatorcontrib>BEWLEY, W. W</creatorcontrib><creatorcontrib>LINDLE, J. R</creatorcontrib><creatorcontrib>KIM, C. S</creatorcontrib><creatorcontrib>KIM, M</creatorcontrib><creatorcontrib>VURGAFTMAN, I</creatorcontrib><creatorcontrib>MEYER, J. R</creatorcontrib><title>Investigation of mid-infrared type-II W diode lasers</title><title>Journal of electronic materials</title><description>We report an experimental investigation of 16 different mid-infrared diode laser samples with type-II "W" active regions. A number of design modifications were employed to study effects on the I-V characteristics, lasing threshold, and wallplug efficiency. Contrary to expectations, the threshold current density at low temperatures did not vary significantly with the number of active quantum-well periods, nor was there any clear correlation between lasing threshold and photoluminescence intensity. A shorter-wavelength device (3.2-3.6 µm) produced &gt;500 mW of cw power at 80 K, and a second device displayed a wallplug efficiency &gt;10%. The maximum lasing temperature was 317 K for pulsed operation and 218 K for cw operation. At T = 100 K, cavity-length studies indicated an internal loss of 7 cm^sup -1^ and nominal internal efficiency of 96%. Hakki-Paoli measurements of the gain spectrum implied an intrinsic linewidth enhancement factor of ~1.3, which slightly exceeds the theoretical prediction. Longer-wavelength devices (λ [asymptotically =] 3.8-4.5 µm) showed similarly low threshold current densities at T = 80 K but degraded more rapidly with increasing temperature. [PUBLICATION ABSTRACT]</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Effects</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Infrared radiation</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optics</subject><subject>Physics</subject><subject>Semiconductor lasers; laser diodes</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LAzEURYMoWKsbf8Eg6EIYfS8fk8lSi9WBghtFd0OaSSRlOjMmU6H_3kgLBVdvc97l3kPIJcIdAsj7xznQQoFg9IhMUHCWY1l8HpMJsAJzQZk4JWcxrgBQYIkTwqvux8bRf-nR913Wu2ztm9x3Luhgm2zcDjavquwja3zf2KzV0YZ4Tk6cbqO92N8peZ8_vc1e8sXrczV7WOSGoRpz4zQ2RalU00BRSm65AE0lc4WWS0aFA6MFoFq6klq51JZSZaQwTjDFJAKbkptd7hD6702qWa99NLZtdWf7Tayp4hwVygRe_QNX_SZ0qVtNgZc8DccE3e4gE_oYg3X1EPxah22NUP_Zqw_2Eny9T9TR6Dbp6IyPhw9ZAFKQ7BfPUGvL</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>CANEDY, C. L</creator><creator>BEWLEY, W. W</creator><creator>LINDLE, J. R</creator><creator>KIM, C. S</creator><creator>KIM, M</creator><creator>VURGAFTMAN, I</creator><creator>MEYER, J. R</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060301</creationdate><title>Investigation of mid-infrared type-II W diode lasers</title><author>CANEDY, C. L ; BEWLEY, W. W ; LINDLE, J. R ; KIM, C. S ; KIM, M ; VURGAFTMAN, I ; MEYER, J. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cfa1d6899dd06874e450a273f6a7b325f0ca5019bf82e7bae229c75cf53937103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Effects</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Infrared radiation</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optics</topic><topic>Physics</topic><topic>Semiconductor lasers; laser diodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CANEDY, C. L</creatorcontrib><creatorcontrib>BEWLEY, W. W</creatorcontrib><creatorcontrib>LINDLE, J. R</creatorcontrib><creatorcontrib>KIM, C. S</creatorcontrib><creatorcontrib>KIM, M</creatorcontrib><creatorcontrib>VURGAFTMAN, I</creatorcontrib><creatorcontrib>MEYER, J. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CANEDY, C. L</au><au>BEWLEY, W. W</au><au>LINDLE, J. R</au><au>KIM, C. S</au><au>KIM, M</au><au>VURGAFTMAN, I</au><au>MEYER, J. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of mid-infrared type-II W diode lasers</atitle><jtitle>Journal of electronic materials</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>35</volume><issue>3</issue><spage>453</spage><epage>461</epage><pages>453-461</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>We report an experimental investigation of 16 different mid-infrared diode laser samples with type-II "W" active regions. A number of design modifications were employed to study effects on the I-V characteristics, lasing threshold, and wallplug efficiency. Contrary to expectations, the threshold current density at low temperatures did not vary significantly with the number of active quantum-well periods, nor was there any clear correlation between lasing threshold and photoluminescence intensity. A shorter-wavelength device (3.2-3.6 µm) produced &gt;500 mW of cw power at 80 K, and a second device displayed a wallplug efficiency &gt;10%. The maximum lasing temperature was 317 K for pulsed operation and 218 K for cw operation. At T = 100 K, cavity-length studies indicated an internal loss of 7 cm^sup -1^ and nominal internal efficiency of 96%. Hakki-Paoli measurements of the gain spectrum implied an intrinsic linewidth enhancement factor of ~1.3, which slightly exceeds the theoretical prediction. Longer-wavelength devices (λ [asymptotically =] 3.8-4.5 µm) showed similarly low threshold current densities at T = 80 K but degraded more rapidly with increasing temperature. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/BF02690532</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2006-03, Vol.35 (3), p.453-461
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_29441917
source SpringerLink Journals - AutoHoldings
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Effects
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Infrared radiation
Lasers
Materials science
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optics
Physics
Semiconductor lasers
laser diodes
title Investigation of mid-infrared type-II W diode lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20mid-infrared%20type-II%20W%20diode%20lasers&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=CANEDY,%20C.%20L&rft.date=2006-03-01&rft.volume=35&rft.issue=3&rft.spage=453&rft.epage=461&rft.pages=453-461&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/BF02690532&rft_dat=%3Cproquest_cross%3E1014633791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204845231&rft_id=info:pmid/&rfr_iscdi=true