Root finding and approximation approaches through neural networks

In this paper, we propose two approaches to approximate high order multivariate polynomials and to estimate the number of roots of high order univariate polynomials. We employ high order neural networks such as Ridge Polynomial Networks and Pi -- Sigma Networks, respectively. To train the networks e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGSAM bulletin 2005-12, Vol.39 (4), p.118-121
Hauptverfasser: Epitropakis, M. G., Vrahatis, M. N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose two approaches to approximate high order multivariate polynomials and to estimate the number of roots of high order univariate polynomials. We employ high order neural networks such as Ridge Polynomial Networks and Pi -- Sigma Networks, respectively. To train the networks efficiently and effectively, we recommend the application of stochastic global optimization techniques. Finally, we propose a two step neural network based technique, to estimate the number of roots of a high order univariate polynomial.
ISSN:0163-5824
DOI:10.1145/1140378.1140382