Arsenic deposition as a precursor layer on silicon (211) and (311) surfaces
We investigate the properties of arsenic (As) covered Si(211) and Si(311) surfaces by analyzing data from x-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED) images. We then create a model using total surface energy calculations. It was found that both Si(211) and Si(31...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2005-06, Vol.34 (6), p.846-850 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the properties of arsenic (As) covered Si(211) and Si(311) surfaces by analyzing data from x-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED) images. We then create a model using total surface energy calculations. It was found that both Si(211) and Si(311) had 0.68±0.08 surface As coverage. Si(211) had 0.28±0.04 Te coverage and Si(311) had 0.24±0.04 Te coverage. The Si(211) surface replaces the terrace and trench Si atoms with As for a lower surface energy, while the Si edge atoms form dimers. The Si(311) surface replaces all terrace atoms and adsorbs an As dimer every other edge site. These configurations imply an improvement in the mean migration path from the bare silicon surface by allowing the impinging atoms for the next epitaxial layer, tellurium (Te), to bind at every other pair of edge atoms, and not the step terrace sites. This would ensure a nonpolar, B-face growth. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-005-0030-8 |