Nanotribological study of PECVD DLC and reactively sputtered Ti containing carbon films

Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the compositions of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2006-10, Vol.15 (10), p.1743-1752
Hauptverfasser: Kvasnica, S., Schalko, J., Eisenmenger-Sittner, C., Benardi, J., Vorlaufer, G., Pauschitz, A., Roy, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the compositions of these films. DLC films are well known for their self-lubricating properties, as well. In view of this, the objective of the present work is to compare the tribological properties of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (PECVD) with the Ti containing nanocrystalline carbon (Ti/a-C:H) film obtained by unbalanced magnetron sputter deposition (UMSD) in nN load range. Towards that purpose, DLC and Ti/a-C:H films are deposited on silicon substrate by PECVD and UMSD processes respectively. The microstructural features and the mechanical properties of these films are determined by scanning electron microscope (SEM), transmission electron microscope (TEM) and nano indenter. The surface topographies and the friction force surfaces of these films are evaluated by means of an atomic force microscope (AFM). The results show that although PECVD DLC film has higher elastic modulus and higher hardness than UMSD Ti/a-C:H film, the surface roughness and the friction coefficient of PECVD film is significantly higher than that of UMSD Ti/a-C:H film.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2006.03.005