Nonnegative solution curves of semipositone problems with Dirichlet boundary conditions
We consider the boundary value problem - u ′ ′ ( x ) = λ f ( u ( x ) ) , x ∈ ( - 1 , 1 ) , u ( - 1 ) = 0 = u ( 1 ) , where λ > 0 is a parameter and f ∈ C 2 ( 0 , ∞ ) is monotonically increasing and concave up such that f ( 0 ) < 0 (i.e. is the semipositone). In this paper we study the case p =...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2005-05, Vol.61 (4), p.485-489 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the boundary value problem
-
u
′
′
(
x
)
=
λ
f
(
u
(
x
)
)
,
x
∈
(
-
1
,
1
)
,
u
(
-
1
)
=
0
=
u
(
1
)
,
where
λ
>
0
is a parameter and
f
∈
C
2
(
0
,
∞
)
is monotonically increasing and concave up such that
f
(
0
)
<
0
(i.e. is the semipositone). In this paper we study the case
p
=
θ
and
p
∈
(
θ
,
+
∞
)
. (
p is the supremum of the nonnegative solution and
θ
is such that
F
(
θ
)
=
∫
0
θ
f
(
s
)
d
s
=
0
.
) We discuss existence and multiplicity results for nonnegative solutions. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2004.08.037 |