An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization

This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2005-08, Vol.194 (30), p.3374-3393
Hauptverfasser: Lagaros, Nikolaos D., Charmpis, Dimos C., Papadrakakis, Manolis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3393
container_issue 30
container_start_page 3374
container_title Computer methods in applied mechanics and engineering
container_volume 194
creator Lagaros, Nikolaos D.
Charmpis, Dimos C.
Papadrakakis, Manolis
description This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization, the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the ES process evolves by performing NN retrainings using information gradually accumulated during the ES execution. The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures on both sequential and parallel computing environments.
doi_str_mv 10.1016/j.cma.2004.12.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29422695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782505000526</els_id><sourcerecordid>29422695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-ec24a5b543d6351d11f43c1949f30a75301e0373f9767578e471758a55bea41e3</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvjA-hc0SV47HidiAohXhISDdSWcSbgJYmD7SyCr8e7S800U8y9d2YOIWfASmCwvFiVdjAlZ6wqgZeMiz2ygFo1BQdR75NFHshC1VwekqMYVyxXDXxBvq5GalozJbdGOuIcTJ9b-vLhg8YUTMK3b9r5QN0wBb924xtN70itH6Y5meT8mA0ThiwZzGiR-o7i2vfzdhS-NyGzTdtcn7cM7mfrOiEHnekjnv71Y_Jye_N8fV88Pt09XF89FlbwOhVoeWXkq6xEuxQSWoCuEhaaqukEM0oKBsiEEl2jlkqqGisFStZGylc0FaA4Jue73Hz954wx6cFFi31vRvRz1LypOF82MgthJ7TBxxiw01NwQ_5AA9MbxHqlM2K9QayB64w4ey53HswfrB0GHa3DTKF1AW3SrXf_uH8B5lOG8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29422695</pqid></control><display><type>article</type><title>An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization</title><source>Elsevier ScienceDirect Journals</source><creator>Lagaros, Nikolaos D. ; Charmpis, Dimos C. ; Papadrakakis, Manolis</creator><creatorcontrib>Lagaros, Nikolaos D. ; Charmpis, Dimos C. ; Papadrakakis, Manolis</creatorcontrib><description>This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization, the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the ES process evolves by performing NN retrainings using information gradually accumulated during the ES execution. The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures on both sequential and parallel computing environments.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2004.12.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Domain decomposition ; Evolution strategies ; Neural networks ; Optimization ; Parallel computing</subject><ispartof>Computer methods in applied mechanics and engineering, 2005-08, Vol.194 (30), p.3374-3393</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-ec24a5b543d6351d11f43c1949f30a75301e0373f9767578e471758a55bea41e3</citedby><cites>FETCH-LOGICAL-c328t-ec24a5b543d6351d11f43c1949f30a75301e0373f9767578e471758a55bea41e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2004.12.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Charmpis, Dimos C.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><title>An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization</title><title>Computer methods in applied mechanics and engineering</title><description>This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization, the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the ES process evolves by performing NN retrainings using information gradually accumulated during the ES execution. The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures on both sequential and parallel computing environments.</description><subject>Domain decomposition</subject><subject>Evolution strategies</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parallel computing</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvjA-hc0SV47HidiAohXhISDdSWcSbgJYmD7SyCr8e7S800U8y9d2YOIWfASmCwvFiVdjAlZ6wqgZeMiz2ygFo1BQdR75NFHshC1VwekqMYVyxXDXxBvq5GalozJbdGOuIcTJ9b-vLhg8YUTMK3b9r5QN0wBb924xtN70itH6Y5meT8mA0ThiwZzGiR-o7i2vfzdhS-NyGzTdtcn7cM7mfrOiEHnekjnv71Y_Jye_N8fV88Pt09XF89FlbwOhVoeWXkq6xEuxQSWoCuEhaaqukEM0oKBsiEEl2jlkqqGisFStZGylc0FaA4Jue73Hz954wx6cFFi31vRvRz1LypOF82MgthJ7TBxxiw01NwQ_5AA9MbxHqlM2K9QayB64w4ey53HswfrB0GHa3DTKF1AW3SrXf_uH8B5lOG8A</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Lagaros, Nikolaos D.</creator><creator>Charmpis, Dimos C.</creator><creator>Papadrakakis, Manolis</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050801</creationdate><title>An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization</title><author>Lagaros, Nikolaos D. ; Charmpis, Dimos C. ; Papadrakakis, Manolis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-ec24a5b543d6351d11f43c1949f30a75301e0373f9767578e471758a55bea41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Domain decomposition</topic><topic>Evolution strategies</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parallel computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagaros, Nikolaos D.</creatorcontrib><creatorcontrib>Charmpis, Dimos C.</creatorcontrib><creatorcontrib>Papadrakakis, Manolis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagaros, Nikolaos D.</au><au>Charmpis, Dimos C.</au><au>Papadrakakis, Manolis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>194</volume><issue>30</issue><spage>3374</spage><epage>3393</epage><pages>3374-3393</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization, the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the ES process evolves by performing NN retrainings using information gradually accumulated during the ES execution. The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures on both sequential and parallel computing environments.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2004.12.023</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2005-08, Vol.194 (30), p.3374-3393
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_29422695
source Elsevier ScienceDirect Journals
subjects Domain decomposition
Evolution strategies
Neural networks
Optimization
Parallel computing
title An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20neural%20network%20strategy%20for%20improving%20the%20computational%20performance%20of%20evolutionary%20structural%20optimization&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Lagaros,%20Nikolaos%20D.&rft.date=2005-08-01&rft.volume=194&rft.issue=30&rft.spage=3374&rft.epage=3393&rft.pages=3374-3393&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2004.12.023&rft_dat=%3Cproquest_cross%3E29422695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29422695&rft_id=info:pmid/&rft_els_id=S0045782505000526&rfr_iscdi=true