An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization

This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2005-08, Vol.194 (30), p.3374-3393
Hauptverfasser: Lagaros, Nikolaos D., Charmpis, Dimos C., Papadrakakis, Manolis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is focused on improving the computational efficiency of evolutionary algorithms implemented in large-scale structural optimization problems. Locating optimal structural designs using evolutionary algorithms is a task associated with high computational cost, since a complete finite element (FE) analysis needs to be carried out for each parent and offspring design vector of the populations considered. Each of these FE solutions facilitates decision making regarding the feasibility or infeasibility of the corresponding structural design by evaluating the displacement and stress constraints specified for the structural problem at hand. This paper presents a neural network (NN) strategy to reliably predict, in the framework of an evolution strategies (ES) procedure for structural optimization, the feasibility or infeasibility of structural designs avoiding computationally expensive FE analyses. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the ES process evolves by performing NN retrainings using information gradually accumulated during the ES execution. The prediction capabilities and the computational advantages offered by this adaptive NN scheme coupled with domain decomposition solution techniques are investigated in the context of design optimization of skeletal structures on both sequential and parallel computing environments.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2004.12.023