Porous Membrane Electrical Cell–Substrate Impedance Spectroscopy for Versatile Assessment of Biological Barriers In Vitro

Cell culture models of endothelial and epithelial barriers typically use porous membrane inserts (e.g., Transwell inserts) as a permeable substrate on which barrier cells are grown, often in coculture with other cell types on the opposite side of the membrane. Current methods to characterize barrier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2024-03, Vol.7 (3), p.2000-2011
Hauptverfasser: Chebotarev, Oleg, Ugodnikov, Alisa, Simmons, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell culture models of endothelial and epithelial barriers typically use porous membrane inserts (e.g., Transwell inserts) as a permeable substrate on which barrier cells are grown, often in coculture with other cell types on the opposite side of the membrane. Current methods to characterize barrier function in porous membrane inserts can disrupt the barrier or provide bulk measurements that cannot isolate barrier cell resistance alone. Electrical cell–substrate impedance sensing (ECIS) addresses these limitations, but its implementation on porous membrane inserts has been limited by costly manufacturing, low sensitivity, and lack of validation for barrier assessment. Here, we present porous membrane ECIS (PM-ECIS), a cost-effective method to adapt ECIS technology to porous substrate-based in vitro models. We demonstrate high fidelity patterning of electrodes on porous membranes that can be incorporated into well plates of a variety of sizes with excellent cell biocompatibility with mono- and coculture set ups. PM-ECIS provided sensitive, real-time measurement of isolated changes in endothelial cell barrier impedance with cell growth and barrier disruption. Barrier function characterized by PM-ECIS resistance correlated well with permeability coefficients obtained from simultaneous molecular tracer permeability assays performed on the same cultures, validating the device. Integration of ECIS into conventional porous cell culture inserts provides a versatile, sensitive, and automated alternative to current methods to measure barrier function in vitro, including molecular tracer assays and transepithelial/endothelial electrical resistance.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.4c00114