Materials and Strategies to Enhance Melt Electrowriting Potential
Melt electrowriting (MEW) is an emerging additive manufacturing (AM) technology that enables the precise deposition of continuous polymeric microfibers, allowing for the creation of high‐resolution constructs. In recent years, MEW has undergone a revolution, with the introduction of active propertie...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-06, Vol.36 (24), p.e2312084-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melt electrowriting (MEW) is an emerging additive manufacturing (AM) technology that enables the precise deposition of continuous polymeric microfibers, allowing for the creation of high‐resolution constructs. In recent years, MEW has undergone a revolution, with the introduction of active properties or additional functionalities through novel polymer processing strategies, the incorporation of functional fillers, postprocessing, or the combination with other techniques. While extensively explored in biomedical applications, MEW's potential in other fields remains untapped. Thus, this review explores MEW's characteristics from a materials science perspective, emphasizing the diverse range of materials and composites processed by this technique and their current and potential applications. Additionally, the prospects offered by postprinting processing techniques are explored, together with the synergy achieved by combining melt electrowriting with other manufacturing methods. By highlighting the untapped potentials of MEW, this review aims to inspire research groups across various fields to leverage this technology for innovative endeavors.
This review reports on Melt Electrowriting as an innovative additive manufacturing technology enabling precise deposition of polymeric microfibers with vast potential across diverse fields. It delves into the extensive range of materials already processed by this technique, alongside various explored postprocessing methods and its integration with other technologies, aiming to broaden its applicability and impact. |
---|---|
ISSN: | 0935-9648 1521-4095 1521-4095 |
DOI: | 10.1002/adma.202312084 |