Entropy-Driven Design of Highly Impact-Stiffening Supramolecular Polymer Networks with Salt-Bridge Hydrogen Bonds

Impact-stiffening materials that undergo a strain rate-induced soft-to-rigid transition hold great promise as soft armors in the protection of the human body and equipment. However, current impact-stiffening materials, such as polyborosiloxanes and shear-thickening fluids, often exhibit a limited im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-03, Vol.146 (11), p.7533-7542
Hauptverfasser: Qiao, Haiyan, Wu, Baohu, Sun, Shengtong, Wu, Peiyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impact-stiffening materials that undergo a strain rate-induced soft-to-rigid transition hold great promise as soft armors in the protection of the human body and equipment. However, current impact-stiffening materials, such as polyborosiloxanes and shear-thickening fluids, often exhibit a limited impact-stiffening response. Herein, we propose a design strategy for fabricating highly impact-stiffening supramolecular polymer networks by leveraging high-entropy-penalty physical interactions. We synthesized a fully biobased supramolecular polymer comprising poly­(α-thioctic acid) and arginine clusters, whose chain dynamics are governed by highly specific guanidinium-carboxylate salt-bridge hydrogen bonds. The resulting material exhibits an exceptional impact-stiffening response of ∼2100 times, transitioning from a soft dissipating state (21 kPa, 0.1 Hz) to a highly stiffened glassy state (45.3 MPa, 100 Hz) with increasing strain rates. Moreover, the material’s high energy-dissipating and hot-melting properties bring excellent damping performance and easy hybridization with other scaffolds. This entropy-driven approach paves the way for the development of next-generation soft, sustainable, and impact-resistant materials.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c13392