Hydrothermally Synthesized Z‑Scheme Nanocomposite of ZIF‑9 Modified MXene for Photocatalytic Degradation of 4‑Chlorophenol
4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential t...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-03, Vol.40 (11), p.6004-6015 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV–visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c00022 |