Adsorptive removal of dichlorophenoxyacetic acid (2,4-D) using novel nanoparticles based on cationic surfactant-coated titania nanoparticles

A novel nanomaterial based on cationic surfactant-coated TiO 2 nanoparticle (CCTN) was systematically fabricated in this work. Synthesized titania nanoparticles were thoroughly characterized by XRD, FT-IR, HR-TEM, TEM–EDX, SEM with EDX mapping, BET, and ζ potential measurements. The adsorption of ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-03, Vol.30 (14), p.42367-42377
Hauptverfasser: Le, Thi Dung, Nguyen, Duc Thang, Nguyen, Quynh Loan, Duong, Viet Dung, Doan, Thi Hai Yen, Nadda, Ashok Kumar, Sharma, Swati, Le, Thanh Son, Pham, Tien Duc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel nanomaterial based on cationic surfactant-coated TiO 2 nanoparticle (CCTN) was systematically fabricated in this work. Synthesized titania nanoparticles were thoroughly characterized by XRD, FT-IR, HR-TEM, TEM–EDX, SEM with EDX mapping, BET, and ζ potential measurements. The adsorption of cationic surfactant, cetyltrimethylammonium bromide (CTAB), on TiO 2 was studied under various pH and ionic strength conditions. Adsorption of CTAB on TiO 2 increased with ionic strength increment in the presence of hemimicelle monolayer structure, indicating that nonelectrostatic and electrostatic forces control CTAB uptake. CTAB adsorption isotherms on TiO 2 were according to a two-step model. Potential application in pesticide removal of 2,4-dichorophenoxy acetic acid (2,4-D) using CCTN was also studied. Optimum parameters for 2,4-D treatment through adsorption technique were pH 5, adsorption time of 120 min, and CCTN dosage of 10 mg·mL –1 . Very low 2,4-D removal efficiency using TiO 2 without CTAB coating was found to be approximately 28.5% whereas the removal efficiency was up to about 90% by using CCTN under optimum conditions, and the maximum adsorption capacity of 12.79 mg·g –1 was found. Adsorption isotherms of 2,4-D on CCTN were more suitable with the Langmuir model than Freundlich. Adsorption mechanisms of 2,4-D on CCTN were mainly governed by Columbic attraction based on isotherms and surface charge changes.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-25312-1