An a posteriori error estimator for the p- and hp-versions of the finite element method
An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 199...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2005-01, Vol.62 (1), p.1-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 1998; 42:561–587), which is based on the minimum complementary energy principle. In order to obtain the local error estimate, this error indicator is corrected by a factor which depends only on the polynomial degree of the element. The proposed error estimator shows a good effectivity index in meshes with uniform and non‐uniform polynomial distributions, especially when the global error is estimated. Furthermore, the local error estimator is reliable enough to guide p‐ and hp‐adaptive refinement strategies. Copyright © 2004 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.1162 |