Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol)

A study has been made of the non-isothermal crystallization behavior and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol) with 80% degree of saponification (PVA80). Possible sample degradation was first investigated, but no significant degradation or dehydration was d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2006-05, Vol.47 (11), p.3935-3945
Hauptverfasser: Huang, He, Gu, Lixia, Ozaki, Yukihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study has been made of the non-isothermal crystallization behavior and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol) with 80% degree of saponification (PVA80). Possible sample degradation was first investigated, but no significant degradation or dehydration was detected using FTIR and DSC under the experimental condition. The non-isothermal crystallization of PVA80 was analyzed with Ozawa equation, and the Mo method of combining Ozawa and Avrami equations. Ozawa equation was only applicable in a narrow temperature range from 80 to 100 °C. The deviation from the Ozawa equation is not due to the secondary crystallization or the quasi-isothermal nature of the treatment. It is only a result of the large relative difference of the relative crystallinity values under different cooling rates. The Mo method demonstrated a success in the full temperature range investigated. The isoconversional method developed by Friedman failed to estimate the activation energy for this non-isothermal crystallization. Thermal transitions of PVA80 are associated with its complex hydrogen-bonding interactions. The melt-crystallized PVA80 sample, as that from film casting, followed by annealing at 60 and 80 °C, has a broad melting temperature range measured by DSC and FTIR. It was found that the melting behavior of a semicrystalline polymer can be probed via a non-crystalline hydrogen-bonded C O band using FTIR. The glass transition temperature T g of PVA80 was raised about 20 °C, after the sample was melt-crystallized. The intensity of the hydrogen-bonded C O band increases when temperature was increased from 110 to 180 °C, due to the promoted hydrogen-bonding interactions between the C O groups in the amorphous phase and the hydroxyl groups from the crystalline phase, which is also the main reason for the increased T g transition.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2006.03.089