Efficient polynomial substitutions of a sparse argument
Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to...
Gespeichert in:
Veröffentlicht in: | SIGSAM bulletin 1981-08, Vol.15 (3), p.17-23 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 3 |
container_start_page | 17 |
container_title | SIGSAM bulletin |
container_volume | 15 |
creator | Rowan, William H. |
description | Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument. |
doi_str_mv | 10.1145/1089263.1089266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29417404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29417404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</originalsourceid><addsrcrecordid>eNotkLFOwzAURT2ARCnMrJ7Y0vrZsWOPqCpQqRJLd8tJbGSUxMEvGfr3BDXTGe7RGS4hL8B2AKXcA9OGK7G7Ud2RDQMlCql5-UAeEX8YAw0VbEh1DCE20Q8THVN3HVIfXUdxrnGK0zzFNCBNgTqKo8voqcvfc7_YT-Q-uA7988otubwfL4fP4vz1cTq8nYsGgKuihVoZ5XgbhDYgAJTmnKlKc1aXUEkpRFU13LVaQMMUk57z4EujjJZmWbfk9ZYdc_qdPU62j9j4rnODTzNabpZKycpF3N_EJifE7IMdc-xdvlpg9v8Tu36yUok_JT9TwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29417404</pqid></control><display><type>article</type><title>Efficient polynomial substitutions of a sparse argument</title><source>ACM Digital Library Complete</source><creator>Rowan, William H.</creator><creatorcontrib>Rowan, William H.</creatorcontrib><description>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</description><identifier>ISSN: 0163-5824</identifier><identifier>DOI: 10.1145/1089263.1089266</identifier><language>eng</language><ispartof>SIGSAM bulletin, 1981-08, Vol.15 (3), p.17-23</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rowan, William H.</creatorcontrib><title>Efficient polynomial substitutions of a sparse argument</title><title>SIGSAM bulletin</title><description>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</description><issn>0163-5824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURT2ARCnMrJ7Y0vrZsWOPqCpQqRJLd8tJbGSUxMEvGfr3BDXTGe7RGS4hL8B2AKXcA9OGK7G7Ud2RDQMlCql5-UAeEX8YAw0VbEh1DCE20Q8THVN3HVIfXUdxrnGK0zzFNCBNgTqKo8voqcvfc7_YT-Q-uA7988otubwfL4fP4vz1cTq8nYsGgKuihVoZ5XgbhDYgAJTmnKlKc1aXUEkpRFU13LVaQMMUk57z4EujjJZmWbfk9ZYdc_qdPU62j9j4rnODTzNabpZKycpF3N_EJifE7IMdc-xdvlpg9v8Tu36yUok_JT9TwQ</recordid><startdate>198108</startdate><enddate>198108</enddate><creator>Rowan, William H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198108</creationdate><title>Efficient polynomial substitutions of a sparse argument</title><author>Rowan, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rowan, William H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIGSAM bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowan, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient polynomial substitutions of a sparse argument</atitle><jtitle>SIGSAM bulletin</jtitle><date>1981-08</date><risdate>1981</risdate><volume>15</volume><issue>3</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>0163-5824</issn><abstract>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</abstract><doi>10.1145/1089263.1089266</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-5824 |
ispartof | SIGSAM bulletin, 1981-08, Vol.15 (3), p.17-23 |
issn | 0163-5824 |
language | eng |
recordid | cdi_proquest_miscellaneous_29417404 |
source | ACM Digital Library Complete |
title | Efficient polynomial substitutions of a sparse argument |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20polynomial%20substitutions%20of%20a%20sparse%20argument&rft.jtitle=SIGSAM%20bulletin&rft.au=Rowan,%20William%20H.&rft.date=1981-08&rft.volume=15&rft.issue=3&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=0163-5824&rft_id=info:doi/10.1145/1089263.1089266&rft_dat=%3Cproquest_cross%3E29417404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29417404&rft_id=info:pmid/&rfr_iscdi=true |