Efficient polynomial substitutions of a sparse argument

Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGSAM bulletin 1981-08, Vol.15 (3), p.17-23
1. Verfasser: Rowan, William H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 3
container_start_page 17
container_title SIGSAM bulletin
container_volume 15
creator Rowan, William H.
description Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.
doi_str_mv 10.1145/1089263.1089266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29417404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29417404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</originalsourceid><addsrcrecordid>eNotkLFOwzAURT2ARCnMrJ7Y0vrZsWOPqCpQqRJLd8tJbGSUxMEvGfr3BDXTGe7RGS4hL8B2AKXcA9OGK7G7Ud2RDQMlCql5-UAeEX8YAw0VbEh1DCE20Q8THVN3HVIfXUdxrnGK0zzFNCBNgTqKo8voqcvfc7_YT-Q-uA7988otubwfL4fP4vz1cTq8nYsGgKuihVoZ5XgbhDYgAJTmnKlKc1aXUEkpRFU13LVaQMMUk57z4EujjJZmWbfk9ZYdc_qdPU62j9j4rnODTzNabpZKycpF3N_EJifE7IMdc-xdvlpg9v8Tu36yUok_JT9TwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29417404</pqid></control><display><type>article</type><title>Efficient polynomial substitutions of a sparse argument</title><source>ACM Digital Library Complete</source><creator>Rowan, William H.</creator><creatorcontrib>Rowan, William H.</creatorcontrib><description>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</description><identifier>ISSN: 0163-5824</identifier><identifier>DOI: 10.1145/1089263.1089266</identifier><language>eng</language><ispartof>SIGSAM bulletin, 1981-08, Vol.15 (3), p.17-23</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Rowan, William H.</creatorcontrib><title>Efficient polynomial substitutions of a sparse argument</title><title>SIGSAM bulletin</title><description>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</description><issn>0163-5824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURT2ARCnMrJ7Y0vrZsWOPqCpQqRJLd8tJbGSUxMEvGfr3BDXTGe7RGS4hL8B2AKXcA9OGK7G7Ud2RDQMlCql5-UAeEX8YAw0VbEh1DCE20Q8THVN3HVIfXUdxrnGK0zzFNCBNgTqKo8voqcvfc7_YT-Q-uA7988otubwfL4fP4vz1cTq8nYsGgKuihVoZ5XgbhDYgAJTmnKlKc1aXUEkpRFU13LVaQMMUk57z4EujjJZmWbfk9ZYdc_qdPU62j9j4rnODTzNabpZKycpF3N_EJifE7IMdc-xdvlpg9v8Tu36yUok_JT9TwQ</recordid><startdate>198108</startdate><enddate>198108</enddate><creator>Rowan, William H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198108</creationdate><title>Efficient polynomial substitutions of a sparse argument</title><author>Rowan, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1126-d1b696a2df38913116822067820b417553377c2ad831c0605e22fe4969859553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rowan, William H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIGSAM bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowan, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient polynomial substitutions of a sparse argument</atitle><jtitle>SIGSAM bulletin</jtitle><date>1981-08</date><risdate>1981</risdate><volume>15</volume><issue>3</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>0163-5824</issn><abstract>Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.</abstract><doi>10.1145/1089263.1089266</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-5824
ispartof SIGSAM bulletin, 1981-08, Vol.15 (3), p.17-23
issn 0163-5824
language eng
recordid cdi_proquest_miscellaneous_29417404
source ACM Digital Library Complete
title Efficient polynomial substitutions of a sparse argument
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20polynomial%20substitutions%20of%20a%20sparse%20argument&rft.jtitle=SIGSAM%20bulletin&rft.au=Rowan,%20William%20H.&rft.date=1981-08&rft.volume=15&rft.issue=3&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=0163-5824&rft_id=info:doi/10.1145/1089263.1089266&rft_dat=%3Cproquest_cross%3E29417404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29417404&rft_id=info:pmid/&rfr_iscdi=true