Efficient polynomial substitutions of a sparse argument

Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGSAM bulletin 1981-08, Vol.15 (3), p.17-23
1. Verfasser: Rowan, William H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods are presented for taking powers of symbolic polynomials and substituting them into univariate polynomials with scalar coefficients. It is shown that the size of the result is a sharp lower bound on the number of coefficient multiplications required to raise a completely sparse polynomial to a power. Other theoretical results prove the optimality or near-optimality of the methods given, in terms of numbers of coefficient operations, under the condition of complete sparsity of the argument.
ISSN:0163-5824
DOI:10.1145/1089263.1089266