On the size of minimal blocking sets of Q(4; q ), for q = 5,7

Let Q(2n + 2; q ) denote the non-singular parabolic quadric in the projective geometry PG(2 n + 2; q ). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; q ), for q = 5; 7.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGSAM bulletin 2004-09, Vol.38 (3), p.67-84
Hauptverfasser: De Beule, J., Hoogewijs, A., Storme, L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Q(2n + 2; q ) denote the non-singular parabolic quadric in the projective geometry PG(2 n + 2; q ). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; q ), for q = 5; 7.
ISSN:0163-5824
DOI:10.1145/1040034.1040037