On the size of minimal blocking sets of Q(4; q ), for q = 5,7
Let Q(2n + 2; q ) denote the non-singular parabolic quadric in the projective geometry PG(2 n + 2; q ). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4; q ), for q = 5; 7.
Gespeichert in:
Veröffentlicht in: | SIGSAM bulletin 2004-09, Vol.38 (3), p.67-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Q(2n + 2;
q
) denote the non-singular parabolic quadric in the projective geometry PG(2
n
+ 2;
q
). We describe the implementation in GAP of an algorithm to study the problem of the minimal number of points of a minimal blocking set, different from an ovoid, of Q(4;
q
), for
q
= 5; 7. |
---|---|
ISSN: | 0163-5824 |
DOI: | 10.1145/1040034.1040037 |