An efficient and backwards-compatible transformation to ensure memory safety of C programs
Memory-related errors, such as buffer overflows and dangling pointers, remain one of the principal reasons for failures of C programs. As a result, a number of recent research efforts have focused on the problem of dynamic detection of memory errors in C programs. However, existing approaches suffer...
Gespeichert in:
Veröffentlicht in: | Software engineering notes 2004-11, Vol.29 (6), p.117-126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memory-related errors, such as buffer overflows and dangling pointers, remain one of the principal reasons for failures of C programs. As a result, a number of recent research efforts have focused on the problem of dynamic detection of memory errors in C programs. However, existing approaches suffer from one or more of the following problems: inability to detect all memory errors (e.g., Purify), requiring non-trivial modifications to existing C programs (e.g., Cyclone), changing the memory management model of C to use garbage collection (e.g., CCured), and excessive performance overheads. In this paper, we present a new approach that addresses these problems. Our approach operates via source code transformation and combines efficient data-structures with simple, localized optimizations to obtain good performance. |
---|---|
ISSN: | 0163-5948 |
DOI: | 10.1145/1041685.1029913 |