High strength microalloyed CMn(V–Nb–Ti) and CMn(V–Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, precipitation and mechanical properties
Compact strip production (CSP) technology is an important upcoming processing route to produce low cost microalloyed high strength pipeline steels that meet the API standards. Hot strips of CMn(VNbTi) and CMn(VNb) steel grades with fine-grained ferrite–pearlite microstructure and small volume fracti...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2006-05, Vol.424 (1), p.307-317 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compact strip production (CSP) technology is an important upcoming processing route to produce low cost microalloyed high strength pipeline steels that meet the API standards. Hot strips of CMn(VNbTi) and CMn(VNb) steel grades with fine-grained ferrite–pearlite microstructure and small volume fraction of lower transformation product (non-polygonal ferrite: acicular ferrite/bainite) were produced using CSP technology with high strength and excellent low-temperature toughness up to −60
°C. For strip thicknesses between 6 and 12.5
mm, yield strength levels of up to 590
MPa and tensile strength levels up to 680
MPa were achieved. The CMn(VNb) steel exhibited outstanding notch-toughness in the range of 200 and 400
J/cm
2, in spite of its higher yield strength (∼100
MPa or greater) over the CMn(VNbTi) steel. The precipitates present in CMn(VNbTi) and CMn(VNb) steels were characterized in terms of morphology, size and chemistry, and crystallography. The microalloying elements, Ti, Nb, and V form M
4C
3 type of carbides in the ferrite matrix of both the steels. The multi-microalloying approaches of CMn(VNbTi) and CMn(VNb) results in the formation of duplex and triplex carbonitrides, respectively. The results of the development effort are described. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2006.03.026 |