Node-Level Energy Management for Sensor Networks in the Presence of Multiple Applications

Energy related research in wireless ad hoc sensor networks (WASNs) is focusing on energy saving techniques in the application-, protocol-, service-, or hardware-level. Little has been done to manage the finite amount of energy for a given (possibly optimally-designed) set of applications, protocols...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2004-11, Vol.10 (6), p.737-746
Hauptverfasser: Boulis, Athanassios, Srivastava, Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy related research in wireless ad hoc sensor networks (WASNs) is focusing on energy saving techniques in the application-, protocol-, service-, or hardware-level. Little has been done to manage the finite amount of energy for a given (possibly optimally-designed) set of applications, protocols and hardware. Given multiple candidate applications (i.e., distributed algorithms in a WASN) of different energy costs and different user rewards, how does one manage a finite energy amount? Where does one provide energy, so as to maximize the useful work done (i.e., maximize user rewards)? We formulate the problem at the node-level, by having system-level "hints" from the applications. In order to tackle the central problem we first identify the energy consumption patterns of applications in WASNs, we propose ways for real-time measurements of the energy consumption by individual applications, and we solve the problem of estimating the extra energy consumption that a new application brings to a set of executing applications. Having these tools at our disposal, and by properly abstracting the problem we present an optimal admission control policy and a post-admission policing mechanism at the node-level. The admission policy can achieve up to 48% increase in user rewards compared to the absence of energy management, for a variety of application mixes. [PUBLICATION ABSTRACT]
ISSN:1022-0038
1572-8196
DOI:10.1023/B:WINE.0000044032.41234.d7