Effect of Cooling Rate and Particle Size on Compressive Strength of Macroporous Hydroxyapatite

The objective of this study was to produce a macroporous hydroxyapatite(HA) scaffold with high strength by controlling the size of HA particles as well as cooling rate from the sintering temperature. Macroporous polyurethane sponge was employed as template to manufacture the macroporous HA scaffolds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2006-01, Vol.309-311, p.1047-1050
Hauptverfasser: Lee, Byung Hyun, Choi, Seong Ho, Kim, Kwang Mahn, Lee, Yong Keun, Kim, Yeon Ung, LeGeros, Racquel Z., Kim, Chong Kwan, Kim, Kyoung Nam, Kim, Min Chul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to produce a macroporous hydroxyapatite(HA) scaffold with high strength by controlling the size of HA particles as well as cooling rate from the sintering temperature. Macroporous polyurethane sponge was employed as template to manufacture the macroporous HA scaffolds. Particle sizes of HA powders selected in this study were 4 µm and 7 µm. They were dispersed in distilled water with organic additives and infiltrated into polyurethane sponge. After drying and sintering at 1300oC, cooled down to room temperature slowly to prevent microcracking either 1oC/min or 3oC/min. Density, porosity and compressive strength were measured with different particle size and cooling rate. Both density and compressive strength were increased with decreasing particle size or cooling rate, while porosity was not related to.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.309-311.1047