Multiple critical points for nondifferentiable functionals involving Hardy potentials
In this paper we study general functionals of the calculus of variations with the presence of a Hardy potential. We will improve several results obtained in the semilinear framework. We will first prove a general weak lower semicontinuity result, which will imply the existence of a minimum point whe...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2005-05, Vol.61 (4), p.517-542 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study general functionals of the calculus of variations with the presence of a Hardy potential. We will improve several results obtained in the semilinear framework. We will first prove a general weak lower semicontinuity result, which will imply the existence of a minimum point whenever the functional is coercive. Then we will demonstrate existence and multiplicity results of critical points, even if our functional is not differentiable. We will apply a nonsmooth critical point theory developed in Corvellec et al. (Nonlinear Anal. 1 (1993) 151) and Degiovanni and Marzocchi (Ann. Mat. Pura Appl. 167 (1994) 73). |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2004.11.015 |