Multiple critical points for nondifferentiable functionals involving Hardy potentials

In this paper we study general functionals of the calculus of variations with the presence of a Hardy potential. We will improve several results obtained in the semilinear framework. We will first prove a general weak lower semicontinuity result, which will imply the existence of a minimum point whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2005-05, Vol.61 (4), p.517-542
1. Verfasser: Pellacci, Benedetta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study general functionals of the calculus of variations with the presence of a Hardy potential. We will improve several results obtained in the semilinear framework. We will first prove a general weak lower semicontinuity result, which will imply the existence of a minimum point whenever the functional is coercive. Then we will demonstrate existence and multiplicity results of critical points, even if our functional is not differentiable. We will apply a nonsmooth critical point theory developed in Corvellec et al. (Nonlinear Anal. 1 (1993) 151) and Degiovanni and Marzocchi (Ann. Mat. Pura Appl. 167 (1994) 73).
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2004.11.015