Q-learning and fuzzy logic multi-tier multi-access edge clustering for 5g v2x communication

The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Network (Bristol) 2024-03, p.1-24
Hauptverfasser: Alagumani, Sangeetha, Natarajan, Uma Maheswari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalability, resiliency, interoperability, and high data rate/low delay are the primary requirements and obstacles of 5 G cellular networks. Due to IEEE 802.11p's constraints, such as limited coverage, inability to handle dense vehicle networks, signal congestion, and connectivity outages, efficient data distribution is a big challenge (MAC contention problem). In this research, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) services are used to overcome bandwidth constraints in very dense network communications from cellular tool to everything (C-V2X). Clustering is done through multi-layered multi-access edge clustering, which helps reduce vehicle contention. Fuzzy logic and Q-learning and intelligence are used for a multi-hop route selection system. The proposed protocol adjusts the number of cluster-head nodes using a Q-learning algorithm, allowing it to quickly adapt to a range of scenarios with varying bandwidths and vehicle densities.
ISSN:0954-898X
1361-6536
DOI:10.1080/0954898X.2024.2309947