Printing 3D Metallic Structures in Porous Matrix

The fabrication of metallic micro/nanostructures has great potential for advancing optoelectronic microdevices. Over the past decade, femtosecond laser direct writing (FsLDW) technology has played a crucial role in driving progress in this field. In this study, silica gel glass is used as a supporti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (31), p.e2312071-n/a
Hauptverfasser: Fan, Xiaolin, Wang, Xue, Ye, Yuanxiang, Ye, Ying, Su, Yuming, Zhang, Yusheng, Wang, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fabrication of metallic micro/nanostructures has great potential for advancing optoelectronic microdevices. Over the past decade, femtosecond laser direct writing (FsLDW) technology has played a crucial role in driving progress in this field. In this study, silica gel glass is used as a supporting medium, and FsLDW is employed to reduce gold and palladium ions using 7‐Diethylamino‐3‐thenoylcoumarin (DETC) as a two‐photon sensitizer, enabling the printing of conductive multilayered and 3D metallic structures. How the pore size of the silica gel glass affects the electrical conductivity of printed metal wires is systematically examined. This 3D printing method is versatile and offers expanded opportunities for applying metallic micro/nanostructures in optoelectronic devices. Using silica gel glass as a supporting medium and employing FsLDW, conductive multilayered and 3D gold/palladium structures are printed. How the pore size of the silica gel glass affects the electrical conductivity of printed metal wires is systematically examined. This 3D printing method is versatile and offers expanded opportunities for applying metallic micro/nanostructures in optoelectronic devices.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202312071