Biocatalytic Conversion of Carrageenans for the Production of 3,6-Anhydro-D-galactose
Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applicatio...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-03, Vol.72 (11), p.5816-5827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marine biomass stands out as a sustainable resource for generating value-added chemicals. In particular, anhydrosugars derived from carrageenans exhibit a variety of biological functions, rendering them highly promising for utilization and cascading in food, cosmetic, and biotechnological applications. However, the limitation of available sulfatases to break down the complex sulfation patterns of carrageenans poses a significant limitation for the sustainable production of valuable bioproducts from red algae. In this study, we screened several carrageenolytic polysaccharide utilization loci for novel sulfatase activities to assist the efficient conversion of a variety of sulfated galactans into the target product 3,6-anhydro-D-galactose. Inspired by the carrageenolytic pathways in marine heterotrophic bacteria, we systematically combined these novel sulfatases with other carrageenolytic enzymes, facilitating the development of the first enzymatic one-pot biotransformation of ι- and κ-carrageenan to 3,6-anhdyro-D-galactose. We further showed the applicability of this enzymatic bioconversion to a broad series of hybrid carrageenans, rendering this process a promising and sustainable approach for the production of value-added biomolecules from red-algal feedstocks. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c08613 |