Combining Metabolic Engineering and Lipid Droplet Assembly to Achieve Campesterol Overproduction in Saccharomyces cerevisiae
Campesterol is a kind of important functional food additive. Therefore, stable and efficient campesterol biosynthesis is significant. Herein, we first knocked out the sterol 22-desaturase gene in Saccharomyces cerevisiae and expressed sterol Δ7-reductase from Pangasianodon hypophthalmus, obtaining a...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-03, Vol.72 (9), p.4814-4824 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Campesterol is a kind of important functional food additive. Therefore, stable and efficient campesterol biosynthesis is significant. Herein, we first knocked out the sterol 22-desaturase gene in Saccharomyces cerevisiae and expressed sterol Δ7-reductase from Pangasianodon hypophthalmus, obtaining a strain that produced 6.6 mg/L campesterol. Then, the modular expression of campesterol synthesis enzymes was performed, and a campesterol titer of 88.3 mg/L was achieved. Because campesterol is a lipid-soluble macromolecule, we promoted lipid droplet formation by exploring regulatory factors, and campesterol production was improved to 169.20 mg/L. Next, triacylglycerol lipase was used to achieve compartment campesterol synthesis. After enhancing the expression of sterol Δ7-reductase and screening cations, the campesterol titer reached 438.28 mg/L in a shake flask and 1.44 g/L in a 5 L bioreactor, which represents the highest campesterol titer reported to date. Metabolic regulation combined with lipid droplet engineering may be useful for the synthesis of other steroids as well. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c09764 |