Improvement of optical quality and vibration characteristics of injection molded disk with processing condition control

Increased application of optical disks has required a rotating disk with more dynamic stability and better optical quality. A new concept of controlling the processing condition of injection molded disks is developed to improve their optical quality and vibration characteristics. To assess the effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-09, Vol.101 (5), p.3275-3285
Hauptverfasser: Nam, Ji-Geun, Sin, Hyo-Chol, Na, Sang-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased application of optical disks has required a rotating disk with more dynamic stability and better optical quality. A new concept of controlling the processing condition of injection molded disks is developed to improve their optical quality and vibration characteristics. To assess the effect of process conditions on residual stresses, birefringence, and critical speed, an orthogonal array for design of experiments is used. Melt temperature, filling speed, and packing pressure were effective parameters, but mold temperature and interactions among process conditions were not. The birefringence and critical speed were affected by the residual stress distribution, which varied according to the distance from the gate and processing condition. Considering the effect of the processing conditions and distance from the gate, we calculated the weight factors on residual stresses along the radial direction. Choosing weighted stress to be the target value for optimization of residual stresses, processing conditions control was accomplished. Under the newly proposed conditions, optical quality and stability of injection molded disk were simultaneously improved. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3275–3285, 2006
ISSN:0021-8995
1097-4628
DOI:10.1002/app.23750