Packaged WGM MBR sensor for high-performance temperature measurement using CNN-based multimode barcode images

The whispering gallery mode (WGM) optical microresonator sensors are emerging as a promising platform for precise temperature measurements, driven by their excellent sensitivity, resolution and integration. Nevertheless, challenges endure regarding stability, single resonant mode tracking, and real-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-02, Vol.32 (4), p.5515-5528
Hauptverfasser: Li, Haiju, Lu, Yang, Zhou, Shengao, Jing, Tongmei, Wang, Jing, Ma, Chao, Seo, Min-Kyo, Yu, Liandong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The whispering gallery mode (WGM) optical microresonator sensors are emerging as a promising platform for precise temperature measurements, driven by their excellent sensitivity, resolution and integration. Nevertheless, challenges endure regarding stability, single resonant mode tracking, and real-time monitoring. Here, we demonstrate a temperature measurement approach based on convolutional neural network (CNN), leveraging the recognition of multimode barcode images acquired from a WGM microbottle resonator (MBR) sensor with robust packaged microresonator-taper coupling structure (packaged-MTCS). Our work ensures not only a high sensitivity of -14.28 pm/℃ and remarkable resolution of 3.5 × 10 ℃ across a broad dynamic range of 96 ℃ but also fulfills the demands for real-time temperature measurement with an average detection accuracy of 96.85% and a speed of 0.68s per image. These results highlight the potential of high-performance WGM MBR sensors in various fields and lay the groundwork for stable soliton microcomb excitation through thermal tuning.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.515876