Development and functionalization of electrospun fiber coated thin film microextraction devices for rapid mass spectrometric determination of biologically important polar molecules

Rapid diagnosis of diseases is one of the challenging areas in clinical research. From the analytical chemist’s perspective, the main challenges are isolating the compounds from the bio-specimen and lengthy analysis times. In this regard, solid phase microextraction offers a platform to address the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical and biomedical analysis 2024-06, Vol.243, p.116074-116074, Article 116074
Hauptverfasser: Öztürk, Merve, Salih, Bekir, Eroğlu, Ahmet E., Boyaci, Ezel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid diagnosis of diseases is one of the challenging areas in clinical research. From the analytical chemist’s perspective, the main challenges are isolating the compounds from the bio-specimen and lengthy analysis times. In this regard, solid phase microextraction offers a platform to address the abovementioned challenges. Moreover, its sharp tip-thin film geometry, known as coated blade spray (CBS), can enhance the extraction and act as an ionization source in direct mass spectrometric analysis. In this study, a new CBS device specifically designed for polar analytes was prepared and optimized to determine urinary metabolites. For this purpose, polyacrylonitrile (PAN) was selected as a base polymer as it can be electrospun to form a nanofibrous structure, and it can be modified with weak ion exchange moieties to interact with polar analytes. Following the electrospinning of PAN, hydrolysis was optimized, and conditions leading to sufficient extraction enhancement without dissolving the polymer were obtained when probes were treated with 5.0 M of NaOH for 2.5 h. Using the coated blades prepared as explained, the evaluation of various extraction conditions showed that 5 min is sufficient for equilibrium extraction. In addition, the solution’s ionic strength and pH significantly affect the extraction. Optimum sorption was obtained at no salt added and pH 7.0 conditions. The CBS-MS optimization showed that 10.0 µL of ACN/MeOH/H2O (40:40:20, v/v/v) with formic acid kept for 15 seconds on the blade before voltage application leads to the highest signal. The limits of quantification of the analytes are between 50 and 100 ng/mL. [Display omitted] •Hydrolyzed electrospun PAN can be used for extraction of polar metabolites.•New electrospun based extractive phase provides fast extraction kinetics.•The CBS-MS method is only 6 min and can be used as a fast diagnostic tool.
ISSN:0731-7085
1873-264X
DOI:10.1016/j.jpba.2024.116074