Effect of phonon anharmonicity on thermal conductivity of ZnTe Thin films

The ZnTe thin film is a potential material for optoelectronic devices in extreme temperature and radiation environments. In this report, the thermal conductivity of ZnTe films is measured non-invasively using the micro-Raman method and correlated with the phonon anharmonic effect. The evolution of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-06, Vol.36 (23), p.235002
Hauptverfasser: Ghosh, Kalyan, Ghorai, Gurupada, Sahoo, Pratap K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ZnTe thin film is a potential material for optoelectronic devices in extreme temperature and radiation environments. In this report, the thermal conductivity of ZnTe films is measured non-invasively using the micro-Raman method and correlated with the phonon anharmonic effect. The evolution of crystalline ZnTe thin films from Te/ZnO bilayer by thermal annealing at 450  C has been observed above the melting point of Te, which is confirmed from x-ray diffraction and high-resolution transmission electron microscopy. The ZnTe thin films illustrate three longitudinal phonon modes with higher harmonics of nLO ( = 3) at room temperature. Temperature-dependent Raman spectra in the range of 93-303 K are used to analyze the phonon anharmonicity from Raman shift, FWHM, and Phonon lifetime of the thin films. The Balkanski model is used to fit the anharmonicity-induced phonon frequency shift of nLO modes as a function of temperature, taking into account three- and four-phonon interactions. The intensity ratio of the I2LO/I1LOand I3LO/I2LOprovide information about the electron-phonon coupling strength, which is influenced by the anharmonic effect. The laser power-dependent Raman spectra are used to determine the thermal conductivity of the ZnTe films, which is found to be approximately 9.68 Wm K , remains relatively constant for all nLO modes, indicating that multi-phonon scattering process. The correlation between thermal conductivity and phonon anharmonicity can pave the way for understanding the phonon scattering process in ZnTe thin films for high-performance optoelectronic device applications in harsh conditions.
ISSN:0953-8984
1361-648X
DOI:10.1088/1361-648X/ad2fee