Affine diffractive beam dividers

Diffractive optical elements that divide an input beam into a set of replicas are used in many optical applications ranging from image processing to communications. Their design requires time-consuming optimization processes, which, for a given number of generated beams, are to be separately treated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2024-03, Vol.41 (3), p.510-515
Hauptverfasser: Gori, F, Martínez-Herrero, R, Korotkova, O, Piquero, G, de Sande, J C G, Schettini, G, Frezza, F, Santarsiero, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffractive optical elements that divide an input beam into a set of replicas are used in many optical applications ranging from image processing to communications. Their design requires time-consuming optimization processes, which, for a given number of generated beams, are to be separately treated for one-dimensional and two-dimensional cases because the corresponding optimal efficiencies may be different. After generalizing their Fourier treatment, we prove that, once a particular divider has been designed, its transmission function can be used to generate numberless other dividers through affine transforms that preserve the efficiency of the original element without requiring any further optimization.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.514290