Stress analysis of a large diameter aspheric plastic lens in the variable temperature assisted injection molding process

The technology known as precision injection molding (PIM) has shown great promise in the large-scale manufacturing of optical plastic lenses. The primary challenge with the PIM process is accurately predicting and reducing residual stress in optical plastic lenses. In this work, the finite element m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-02, Vol.63 (5), p.1320-1329
Hauptverfasser: Wang, Longfei, Hu, Yuwang, Xue, Changxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The technology known as precision injection molding (PIM) has shown great promise in the large-scale manufacturing of optical plastic lenses. The primary challenge with the PIM process is accurately predicting and reducing residual stress in optical plastic lenses. In this work, the finite element method (FEM) was used to analyze the residual stress distribution in plastic lenses. A three-dimensional model was created using COMSOL software to investigate how residual stress and temperature varied in optical plastic lenses during the packing and cooling stages. Based on the results, variable temperature assisted injection molding experiments were conducted. The results show that the average residual stress in the optical plastic lenses has decreased by 56%, while the minimum and maximum residual stress levels have decreased by 60% and 61%, respectively. Since this method does not require the extra heat treatment of the optical lenses, it offers considerable cost and efficiency benefits.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.511657