Low SNR multimirror Fabry-Perot pressure sensor optic spectrum signal analysis and demodulation via SVM-KNN regressors

We demonstrate an ensemble learning based method to solve the problem of low SNR Fabry-Perot sensor spectrum signal demodulation. Taking the eight-layer approximate coefficients of a multilevel discrete wavelet transform as input features, an ensemble model that combines multiple SVM and KNN learner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-02, Vol.63 (6), p.A16-A23
Hauptverfasser: Yang, Yiguang, Geng, Dahe, Chen, Hao, Li, Xujin, Zhang, Weihong, Yuan, Yibo, Meng, Xiangqian, Wenhong, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate an ensemble learning based method to solve the problem of low SNR Fabry-Perot sensor spectrum signal demodulation. Taking the eight-layer approximate coefficients of a multilevel discrete wavelet transform as input features, an ensemble model that combines multiple SVM and KNN learners is trained. Bootstrap and booting techniques are introduced for better modeling performance and stability. It is shown that the performance of the proposed ensemble model based on SVM-KNN regressors is excellent; an accuracy of 0.46%F.S. relative mean error is achieved. This method could provide insight into the construction of a large scale fiber based Fabry-Perot sensor network.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.509671